New DRI Study Investigates Formation of Dangerous Compounds by E-cigarettes

New DRI Study Investigates Formation of Dangerous Compounds by E-cigarettes

Reno, Nev. (July 19, 2021) – Scientists with the Desert Research Institute (DRI) Organic Analytical Laboratory, led by Andrey Khlystov, Ph.D., have been awarded a $1.5M grant from the National Institutes of Health (NIH) to study the formation of dangerous compounds by electronic cigarettes (e-cigarettes).

E-cigarettes have grown in popularity in recent years, and emit nicotine and other harmful compounds including formaldehyde, a dangerous human carcinogen. However, the production of these chemicals may differ across different e-cigarette devices, use patterns, and e-liquid (“juice”) formations – and scientists currently lack a thorough understanding of how these chemicals form and how to best test for their presence.

DRI’s study, which will run for three years, will test popular e-cigarette types and devices under a wide range of use patterns to resolve questions about harmful and potentially harmful substances produced by e-cigarettes. Among other things, the research team will investigate interactions between flavoring compounds and coils at different ages, temperatures, and e-liquid formations, and how different combinations of power, puff topography, and e-liquid viscosity affect emissions.

“This project will identify the most important parameters underlying the formation of harmful and potentially harmful constituents produced by e-cigarettes – and thus help inform the public and policymakers regarding health safety of different e-cigarette devices and e-liquid formulations,” Khlystov said.

Information gained from this project is needed to advise the public on potential health risks of different devices and configurations, to establish standardized testing protocols, and to inform policymakers on regulating certain e-cigarette designs and/or e-liquid constituents.

Additional Information:

###

About DRI:
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit 
www.dri.edu.

Does Cold Wildfire Smoke Contribute to Water Repellent Soils in Burned Areas?

Does Cold Wildfire Smoke Contribute to Water Repellent Soils in Burned Areas?

Does Cold Wildfire Smoke Contribute to Water Repellent Soils in Burned Areas?

May 25, 2021
RENO, NEV.

By Kelsey Fitzgerald

Soil Science
Wildfires
Hydrology

Above: After a wildfire, soils in burned areas often become water repellent, leading to increased erosion and flooding after rainfall events. The hillside shown here burned in California’s Loyalton Fire during August 2020.

Credit: Kelsey Fitzgerald/DRI.

A new DRI pilot study finds severe water repellency in sand samples after treatment with both hot and cold smoke.

After a wildfire, soils in burned areas often become water repellent, leading to increased erosion and flooding after rainfall events – a phenomenon that many scientists have attributed to smoke and heat-induced changes in soil chemistry. But this post-fire water repellency may also be caused by wildfire smoke in the absence of heat, according to a new paper from the Desert Research Institute (DRI) in Nevada.

In this pilot study (exploratory research that takes place before a larger-scale study), an interdisciplinary team of scientists led by DRI Associate Research Professor of Atmospheric Science Vera Samburova, Ph.D., exposed samples of clean sand to smoke from burning Jeffrey pine needles and branches in DRI’s combustion chamber, then analyzed the time it took for water droplets placed on the sand surface to be absorbed – a measure of water repellency.

Natasha Sushenko processes samples in the Environmental Microbiology Lab at the Desert Research Institute during a COVID-19 wastewater monitoring study.

A new pilot study by an interdisciplinary team from DRI exposed samples of clean sand to smoke from burning Jeffrey pine needles and branches, then analyzed the time it took for water droplets placed on the sand surface to be absorbed — a measure of water repellency. After exposure to smoke, water droplets sometimes remained on the sand surface for more than 50 minutes without soaking in.

Credit: Vera Samburova/DRI.

The full text of the paper, Effect of Biomass-Burning Emissions on Soil Water Repellent: A Pilot Laboratory Study, is available from Fire: https://www.mdpi.com/2571-6255/4/2/24

The pilot study investigated the effects of smoke and heat on water repellency of the sand and was the first study to also incorporate an analysis of cold smoke. In the experiments, sand was used in place of soil because it could be cleaned thoroughly and analyzed accurately, and Jeffrey pine for a fuel source because it represents a common wildland fire fuel in the Western U.S.

Before exposure to Jeffrey pine smoke, water droplets placed on the surface of the sand samples were quickly absorbed. But after exposure to smoke, the sand samples showed severe-to-extreme water repellency, in some cases retaining water droplets on the sand surface for more than 50 minutes without soaking in. It made little difference whether or not samples had been exposed to heat and smoke, or just cold smoke.

“The classic explanation for fire-induced water repellency is that it is caused as smoke diffuses under rather hot conditions and settles down into the soils, but our work shows that the smoke does not have to be hot to turn the sand hydrophobic — simply the presence of the chemical substances in the smoke is enough,” Samburova said. “This is something we really need to look deeper into because soil water repellency leads to increases in flooding, erosion, and surface runoff.”

Above, left: Jeffrey pine needles and sticks were used as a fuel source in the new DRI study because Jeffrey pine represents a common wildland fire fuel in the Western U.S.

Credit: Vera Samburova/DRI.

Above, right: Jeffrey pine needles and branches burn inside of the combustion chamber at DRI during a new study that investigated the effects of smoke and heat on water repellent of sand samples.

Credit: Vera Samburova/DRI.

This study built on previously published work by former DRI postdoctoral researcher Rose Shillito, Ph.D., (currently with the U.S. Army Corps of Engineers), Markus Berli, Ph.D., of DRI, and Teamrat Ghezzehei, Ph.D., of University of California, Merced, in which the researchers developed an analytical model for relating soil water repellency to infiltration of water.

“Our earlier paper focused on how fire changes the properties of soils, from a hydrology perspective,” Berli explained. “In our current study, we were interested in learning more about the chemistry behind the process of how soils come to be hydrophobic. We’re bringing together geochemistry and organic geochemistry with soil physics and hydrology to understand the impact of fire-induced water repellency on hydrology.”

The project team is now working on a larger proposal to further investigate questions touched on by this study about the roles of heat and smoke in fire-induced water repellency. Among other things, they would like to know how long soil water repellency lasts after a fire, and gain a better understanding of the detailed processes and mechanisms through which cold smoke affects the soil.

In her free time, Natasha enjoys hiking and being outside in beautiful areas like the Desolation Wilderness in California.

DRI’s combustion chamber, pictured here, is a specialized facility that has been designed and built for the open combustion of solid fuels under controlled conditions. In this experiment, it was used to expose samples of clean sand to Jeffrey pine smoke. 

Credit: Kelsey Fitzgerald/DRI.

Gaining a thorough understanding of the process that leads to fire-induced soil water repellency is important because land managers need this information in order to accurately predict where soils are likely to be hydrophobic after a fire, Berli explained.

“We still don’t really understand the processes that lead to this fire-induced soil water repellency,” Berli said. “Depending on what we find, the measures to predict fire-induced water repellency might be different, and this can have a significant impact on how we can predict and prevent flooding or debris flows that happen after a fire.”

“This study was one big step forward, but it highlights the importance of future research on how fires affect soil, because wildfires are affecting thousands and thousands of square kilometers of land each year in the Western U.S., ” Samburova added. “Some of our future goals are to find out how exactly this soil water repellent happens, where it happens and how long it lasts.”

Additional Information:

This study was made possible with support from DRI and the National Science Foundation. Study authors included Vera Samburova, Ph.D., Rose Shillito, Ph.D. (currently with U.S. Army Corps of Engineers), Markus Berli, Ph.D., Andrey Khlystov, Ph.D., and Hans Moosmüller, Ph.D., all from DRI.

The full text of the paper, Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study, is available from Fire: https://www.mdpi.com/2571-6255/4/2/24

###

About the Desert Research Institute
The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu

What’s in the plume? Researchers compare health impacts of smoke from wildfires versus prescribed burns

What’s in the plume? Researchers compare health impacts of smoke from wildfires versus prescribed burns

What’s in the plume?
Scientists compare health impacts of smoke from wildfires versus prescribed burns.
Reno, Nev.
October 26, 2020

Plumes
Human health
Wildfire smoke

Featured research by DRI’s Andrey Khlystov, Dante Staten, Jim Metcalf, Adam Watts, Vera Samburova, Siying Lu, and Hans Moosmuller.

When the air over Reno and other western communities turns hazy-brown with wildfire smoke, many can’t help but wonder – what is in the smoke, and can it make us sick? Desert Research Institute (DRI) scientists Andrey Khlystov, Ph.D., Dante Staten, M.S., and a team of colleagues from DRI and the University of Nevada, Reno (UNR) are currently working to find out, as part of a five-year project funded by the National Institutes of Health.

The project, which began in 2019, will compare the impacts on human health of two different types of fire smoke – smoke from wildfires versus that from prescribed burns. Although each can generate large plumes of smoke, wildfires often burn hotter and their plumes may include chemicals released by burning houses or other structures.

“Prescribed fires do still generate smoke, but they are usually lower intensity fires, so they generate different amounts of pollutants and different kinds of particles to some extent,” Khlystov said. “So, our study is asking, what is the relative benefit to health of managing land with prescribed fires? Or, is prescribed fire and wildfire smoke about the same?”

DRI researchers collect data from air quality monitoring station on DRI rooftop

DRI scientists Dante Staten (left) and Andrey Khlystov (right) collect air quality data from sensors located on the roof of the Desert Research Institute in Reno. October 19, 2020.

Credit: DRI.

In 2019, Khlystov, Staten and their colleagues began collecting and analyzing air samples at Environmental Protection Agency (EPA) monitoring sites in Reno and Sparks, as well as on the DRI rooftop. They have continued to collect air quality samples during summer and fall of 2020.

“Last year our air was pretty clean – unlucky for the project, but lucky for everyone else,” Khlystov said. “But this year, from about mid-August to mid-September, we had almost non-stop smoky days.”

Staten, a graduate research assistant and Ph.D. student with UNR’s environmental science program, has been heavily involved in sample collection during his time at DRI. With more than 150 air quality samples now in hand, he is beginning to process and analyze them in DRI’s Organic Analytical Lab.

air quality monitoring equipment
researchers at air quality monitoring station on DRI roof

Above: Using air quality monitoring equipment located at sites in Reno and Sparks, DRI researchers have collected more than 150 air quality samples during the 2020 season. The photos above were taken from the DRI rooftop in 2019 and 2020.

Credit: DRI.
Next, Khlystov and his team plan to conduct laboratory experiments in DRI’s combustion chamber in order to learn more about the specific air quality impacts of burning different fuel types collected from around Reno and other parts of the Sierra Nevada and California, and to learn about how the chemical composition of smoke changes over time. They will use this data and information to create a model of the pollutants present in smoke plumes.  

Working in collaboration with epidemiologist Matt Strickland, Ph.D., of UNR, the researchers will then compare information from the air quality model with a database of health records provided by Renown Health. This will allow the team to investigate impacts of smoke on human health in terms of number of hospital visits that occurred during wildfire or prescribed fire smoke events.  

“Renown has millions of health records, all anonymized so that there are no privacy issues, but we can use them to see how many people have health complaints after an episode of wildfire or prescribed fire smoke,” Khlystov explained. “This will allow epidemiologists to figure out how bad an impact was – for example, if we have an increase in smoke particle concentration by a factor of two, does that mean 100 more people coming to the hospital, or 1,000, or 10,000?” 

Researchers analyze air quality samples in DRI's organic analytical laboratory.

Researchers Dante Staten (left) and Andrey Khlystov (right) analyze air quality samples in DRI’s Organic Analytical Laboratory. October 19, 2020.

Credit: DRI.

As climate change continues to alter natural fire regimes, Khlystov, Staten and their colleagues hope that their study findings will provide needed information to help everyone from land managers to the medical community and individual citizens better manage risk during the fire season.

“The incidence of wildfires here in the west and around the world is increasing, it’s very difficult not to notice,” Khlystov said. “People know that the particles are not good for you and are causing all sorts of health effects, but there are still a lot of unknowns.”

Additional information

For more information on this study, read the project summary: Associations of smoke from wildfires and prescribed burns with cardiorespiratory health outcomes in Reno, NV 

To view realtime air quality data from the rooftop of Desert Research Institute’s Reno campus, visit the Purple Air Network’s air quality map: https://www.purpleair.com/map?opt=1/mAQI/a10/cC0#10.94/39.5768/-119.8067

DRI Video – Wildfire Smoke, Air Quality, & Public Health  

Tiffany Pereira works at Tule Springs
During August and September of 2020, smoke drifted into Nevada from numerous California wildfires. This satellite image shows extremely smoky conditions on September 14, 2020
Credit: NASA Worldview.

New donor-powered research underway to address climate adaptation, water resources, and more

New donor-powered research underway to address climate adaptation, water resources, and more

The DRI Foundation has just awarded the next round of seed grants to six teams of researchers through the Innovation Research Program (IRP). The IRP provides the start-up funding DRI scientists need to test new ideas and produce initial data, which will help them build the scientific case for future research projects.

The 2020 Innovation Research Project winners were chosen through a competitive selection process and reviewed by a committee comprised of previous IRP recipients and DRI’s Vice President for Research. The selected projects demonstrate creative, innovative research or technological development that advances DRI’s mission.


Dr. Mary Cablk’s cadaver dog Inca sniffing in the field.

Dr. Mary Cablk’s cadaver dog Inca sniffing in the field.

Advancing the science behind canine odor detection evidence in criminal trials
Mary Cablk, Yeongkwon Son, Andrey Khlystov

Cadaver dogs are often called on to detect the odors of human remains at a crime scene, and the evidence they find—the odor left behind from a body on a killer’s clothing, for example—is treated as hard scientific fact in criminal trials. However, there are currently no physical or chemical forensic methods to verify this kind of evidence. In a first-of-its-kind study, Dr. Mary Cablk and her team are employing a scientific approach to compare the detection of residual odors by dogs and laboratory instrumentation. This research will bolster the scientific foundation for canine evidence used in homicide cases and position DRI to secure future funding for projects investigating a wider span of canine evidence, such as contraband.

Workers in Pajaro Valley, Watsonville, CA. Credit: Lance Cheung/USDA.

Workers in Pajaro Valley, Watsonville, CA. Credit: Lance Cheung/USDA.

Supporting climate adaptation for specialty crop farmers
Kristin VanderMolen 

Climate change impacts like flooding and drought threaten the production of specialty crops like fruits, nuts, and vegetables in California, a state that grows more than half of these crops nationwide. DRI’s Kristin VanderMolen, PhD, and partners at the Climate Science Alliance at Scripps Institution of Oceanography are investigating how farmers are adapting to these challenges in order to identify how climate research can best support them. This research lays the groundwork for field studies to test and verify the effectiveness of farmers’ adaptation strategies and the development of climate information products to support farmers into the future. Additionally, this project builds relationships between DRI and critical partners, like the Climate Science Alliance and University of California Cooperative Extension.

A section of Smoke Creek Road in rural Northwestern Nevada. Credit: Bob Wick/BLM.

A section of Smoke Creek Road in rural Northwestern Nevada. Credit: Bob Wick/BLM.

Enhancing soil moisture data to improve hydrologic modeling
Ming Liu

Soil moisture is a critical variable when it comes to understanding processes like evapotranspiration, the transfer of water from land surfaces and plants into the atmosphere. Most hydrologic models rely on soil moisture data from satellite remote sensing, but this data lacks ground truthing, especially in remote arid places. In collaboration with Myriota, an Internet of Things (IoT) nanosatellite startup, DRI’s Ming Liu, PhD, is developing sensor stations by integrating Myriota’s nanosatellite transceiver with custom-made universal dataloggers. The sensor stations will be deployed across Nevada to collect soil moisture readings from the field. This project aims to improve the data used in hydrologic models and build the foundation for broader sensor deployment for environmental research in arid lands.

Researchers sample snow

Researchers sample snow for a previous research project. Credit: Nathan Chellman/DRI.

Tracing the history of atmospheric river events to improve water resource management in the Western U.S.
Joe McConnell, Nathan Chellman, Christine Albano

Atmospheric rivers carry significant amounts of water vapor from the tropics to the Western United States, providing 30-40% of the total precipitation during a typical winter season. However, these rivers in the sky can also result in extreme weather like flooding and wind storms, which pose risks to infrastructure and human safety. Despite the significant impacts of atmospheric rivers, little is known about how their frequency and intensity has changed over the past several centuries. Using chemical analysis in DRI’s state-of-the-art Ice Core Laboratory, Joe McConnell, PhD, and his team are working to identify isotopic signatures that differentiate snow produced by atmospheric rivers from that produced by other storms. If successful, researchers will be able to leverage this work in future projects to develop a history of atmospheric rivers over the last several hundred years. Such a record will be valuable for informing water resource management and hazard mitigation, especially as the climate continues to warm and change.

A cannabis growing facility

A cannabis growing facility, part of a previous DRI air quality study. Credit: Vera Samburova/DRI.

Evaluating health risks from cannabis smoking and vaping
David Campbell

The legalization of cannabis products for both medical and recreational use in many states, including Nevada, has resulted in widespread commercial production of non-tobacco smoking and vaping products. However, this growth hasn’t been accompanied by research into the health effects from use of those products—in fact, there has been virtually no analysis of the many chemical compounds that are inhaled by users when smoking or vaping cannabis, due in part to federal research restrictions. Dr. David Campbell is developing a portable sampling system to collect the smoke or vapor for laboratory analysis, and it will be tested with cigarettes made from legal hemp, which is identical to marijuana except for the lower THC content. This research will bolster what we know about the health risks associated with cannabis use and develop intellectual property DRI researchers can leverage in future projects.

The Oceano Dunes State Vehicular Recreation Area (SVRA) on the Central California Coast,

The Oceano Dunes State Vehicular Recreation Area (SVRA) on the Central California Coast, where Gillies and colleagues have previously conducted research on dust and wind erosion.

Modeling and Analysis of Fluid Flow Interactions with Porous/Permeable 3-Dimensional Forms
Jack Gillies, Eden Furtak-Cole

Dust emissions, particularly from arid regions, directly impact air quality, human health, agricultural production, and the planet’s climate. Windy conditions drive the formation of dust through erosion, and while vegetation and structures like fencing are known to mitigate wind erosion and dust emissions, researchers have been unable to quantify their actual impact in large scale models. Dr. Jack Gillies and his team are working to incorporate the erosion mitigation impact of vegetation and engineered control structures into wind erosion models. These models will provide a cost-effective, efficient way to develop dust control strategies and improve air quality. This work will also position DRI as a leader in the ability to evaluate dust emissions and lay the foundation for future projects, particularly as problems like drought and desertification become more pronounced under a warming climate.

Emissions from cannabis growing facilities may impact indoor and regional air quality, new research shows

Emissions from cannabis growing facilities may impact indoor and regional air quality, new research shows

RENO, Nev. (Sept. 16, 2019) – The same chemicals responsible for the pungent smell of a cannabis plant may also contribute to air pollution on a much larger scale, according to new research from the Desert Research Institute (DRI) and the Washoe County Health District (WCHD) in Reno, Nev.

In a new pilot study, DRI scientists visited four cannabis growing facilities in Nevada and California to learn about the chemicals that are emitted during the cultivation and processing of cannabis plants, and to evaluate the potential for larger-scale impacts to urban air quality.

At each facility, the team found high levels of strongly-scented airborne chemicals called biogenic volatile organic compounds (BVOCs), which are naturally produced by the cannabis plants during growth and reproduction. At facilities where cannabis oil extraction took place, researchers also found very high levels of butane, a volatile organic compound (VOC) that is used during the oil extraction process.

“The concentrations of BVOCs and butane that we measured inside of these facilities were high enough to be concerning,” explained lead author Vera Samburova, Ph.D., Associate Research Professor of atmospheric science at DRI. “In addition to being potentially hazardous to the workers inside the cannabis growing and processing facilities, these chemicals can contribute to the formation of ground-level ozone if they are released into the outside air.”

Although ozone in the upper atmosphere provides protection from UV rays, ozone at ground-level is a toxic substance that is harmful for humans to breathe. Ozone can be formed when volatile organic compounds (including those from plants, automobile, and industrial sources) combine with nitrogen oxide emissions (often from vehicles or fuel combustion) in the presence of sunlight. All of these ozone ingredients are in ample supply in Nevada’s urban areas, Samburova explained – and that impacts our air quality.

“Here in our region, unfortunately, we already exceed the national air quality standard for ground-level ozone quite a few times per year,” Samburova said. “That’s why it is so important to answer the question of whether emissions from cannabis facilities are having an added impact.”

A scientist from the Desert Research Institute measures air quality inside of a cannabis growing facility. Credit: Vera Samburova/DRI. 2019.

At one of the four cannabis growing facilities visited during this study, the team measured emission rates over time, to learn about the ozone-forming potential of each individual plant. The results show that the BVOCs emitted by each cannabis plant could trigger the formation of ground-level (bad) ozone at a rate of approximately 2.6g per plant per day. The significance of this number is yet to be determined, says Samurova, but she and her team feel strongly that their findings have raised questions that warrant further study.

“This really hasn’t been studied before,” Samburova said. “We would like to collect more data on emissions rates of plants at additional facilities. We would like to take more detailed measurements of air quality emissions outside of the facilities, and be able to calculate the actual rate of ozone formation. We are also interested in learning about the health impacts of these emissions on the people who work there.”

The cannabis facility personnel that the DRI research team interacted with during the course of the study were all extremely welcoming, helpful, and interested in doing things right, Samburova noted. Next, she and her team hope to find funding to do a larger study, so that they can provide recommendations to the growing facilities and WCHD on optimum strategies for air pollution control.

“With so much growth in this industry across Nevada and other parts of the United States, it’s becoming really important to understand the impacts to air quality,” said Mike Wolf, Permitting and Enforcement Branch Chief for the WCHD Air Quality Management Division. “When new threats emerge, our mission remains the same: Implement clean air solutions that protect the quality of life for the citizens of Reno, Sparks, and Washoe County. We will continue to work with community partners, like DRI, to accomplish the mission.”

This research was funded by the WCHD and DRI. Members of the DRI team included Vera Samburova, Ph.D., Dave Campbell, M.Sc., William R. Stockwell, Ph.D., and Andrey Khlystov, Ph.D.  To view this study online, please visit: https://www.tandfonline.com/doi/full/10.1080/10962247.2019.1654038

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit  www.dri.edu. 

The Washoe County Health District has jurisdiction over all public health matters in Reno, Sparks, and Washoe County through the policy-making Washoe County District Board of Health. The District consists of five divisions: Administrative Health Services, Air Quality Management, Community and Clinical Health Services, Environmental Health Services and Epidemiology & Public Health Preparedness. To learn more, visit https://www.washoecounty.us/health/  

OAL team at the 80th Nevada State Legislature!

OAL team at the 80th Nevada State Legislature!

Drs. Andrey Khlystov and Vera Samburova participated in the DRI Day at the NV Legislature today. They met with Senator Heidi Gansert, Assemblywomen Heidi Ann Swank and Lisa Krasner, and educated many members of NV State Legislature on dangers of flavoring compounds in e-cigarettes. Dr. Khlystov attended the recognition of DRI from the floor of the NV Senate by the State Senator Heidi Gansert.

OAL team attends SRNT Annual Meeting, February 20-23, 2019

OAL team attends SRNT Annual Meeting, February 20-23, 2019

The Organic Analytical Lab was well represented at the Society for Research on Nicotine and Tobacco 2019 Annual Meeting in San Francisco. Drs. Andrey Khlystov, Vera Samburova and Yeongkwon Son attended the meeting and Yeong presented three (!!!) posters. Please visit https://cdn.ymaws.com/www.srnt.org/resource/resmgr/SRNT19_Abstracts.pdf to see the abstracts (POS2-8, POS2-17 and POS4-47). The posters generated a lot of interest and created new opportunities for collaboration with governmental agencies and educational institutions.

OAL Director gives a keynote speech at the ICAST, September 14-15, 2018

OAL Director gives a keynote speech at the ICAST, September 14-15, 2018

Dr. Andrey Khlystov was invited to give a keynote speech at the 25th International Conference on Aerosol Science and Technology (ICAST) in Tainan, Taiwan. His presentation “Light-absorbing organic carbon in biomass burning aerosols, its properties and transformation” highlighted NSF-sponsored research done at the OAL.

Local media coverage of the latest OAL publication

Local media coverage of the latest OAL publication

The latest OAL publication by Vera Samburova et al. on aldehydes in exhaled breath attracted the attention of all major local media outlets! Please click “Continue reading” to see image gallery and enable links to videos.

Reno Gazette Journal (RGJ) story: https://www.rgj.com/story/news/2018/08/20/vaping-leaves-cancer-causing-chemicals-lungs-study/1015582002/ and RGJ Facebook Live: https://www.facebook.com/RGJmedia/videos/301882897057641/

RGJ reporter interviews OAL team for FB live

RGJ reporter interviews OAL team for FB live

KTVN Channel 2 news story: http://www.ktvn.com/story/38910498/pilot-study-shows-significant-amount-of-carcinogens-stay-in-lungs-after-vaping

KTVN2 reporter interviews Dr. Vera Samburova

KTVN2 reporter interviews Dr. Vera Samburova

News 4-Fox 11 story: https://mynews4.com/news/local/dri-scientists-e-cigs-leave-dangerous-amounts-of-cancer-causing-chemicals-in-lungs

Fox 11 reporter and cameraman interviews Dr. Khlystov

Fox 11 reporter and cameraman interviews Dr. Khlystov

Significant amount of cancer-causing chemicals stays in lungs during e-cigarette use, Nevada-based researchers find

Significant amount of cancer-causing chemicals stays in lungs during e-cigarette use, Nevada-based researchers find

Above: Dr. Vera Samburova works in the organic analytical lab at Desert Research Institute, in Reno, Nev., on Tuesday, Feb. 20, 2018.
Photo by Cathleen Allison/Nevada Momentum

Reno, NV (August 15, 2018) – E-cigarettes have become increasingly popular as a smoke-free alternative to conventional tobacco cigarettes, but the health effects of “vaping” on humans have been debated in the scientific and tobacco manufacturing communities. While aldehydes—chemicals like formaldehyde that are known to cause cancer in humans—have been identified in e-cigarette emissions by numerous studies, there has been little agreement about whether such toxins exist in large enough quantities to be harmful to users.

Now, a recently published pilot study by a team of researchers from the Desert Research Institute (DRI) and the University of Nevada, Reno shows that significant amounts of cancer-causing chemicals such as formaldehyde are absorbed by the respiratory tract during a typical vaping session, underscoring the potential health risks posed by vaping.

“Until now, the only research on the respiratory uptake of aldehydes during smoking has been done on conventional cigarette users,” said Vera Samburova, Ph.D., associate research professor in DRI’s Division of Atmospheric Sciences and lead author of the study. “Little is known about this process for e-cigarette use, and understanding the unique risks vaping poses to users is critical in determining toxicological significance.”

Samburova and fellow DRI research professor Andrey Khlystov, Ph.D., have been investigating the health risks associated with e-cigarettes for several years. In 2016, they published findings confirming that dangerous levels of aldehydes are formed during the chemical breakdown of flavored liquids in e-cigarettes and emitted in e-cigarette vapors.

In this study, Samburova and her team estimated e-cigarette users’ exposure to these hazardous chemicals by analyzing the breath of twelve users before and after vaping sessions using a method she and Khlystov have developed over the course of their work together. Through this process, they determined how much the concentration of aldehydes in the breath increased. Researchers then subtracted the concentration of chemicals in exhaled breath from the amount found in the vapors that come directly from the e-cigarette.

The difference, Samburova explains, is absorbed into the user’s lungs.

E-cigarettes in the Organic Analytical Lab

E-cigarettes in the Organic Analytical Lab at DRI.

“We found that the average concentration of aldehydes in the breath after vaping sessions was about ten and a half times higher than before vaping,” Samburova said. “Beyond that, we saw that the concentration of chemicals like formaldehyde in the breath after vaping was hundreds of times lower than what is found in the direct e-cigarette vapors, which suggests that a significant amount is being retained in the user’s respiratory tract.”

The research team took care to ensure that the test conditions of the study mirrored real-life vaping sessions as much as possible. Most participants used their own e-cigarette devices during the study, used e-liquid flavors that were familiar to them, and inhaled for the amount of time that they ordinarily would, which allowed the research team to understand how e-cigarettes are typically used by regular users. Because they tested “normal” vaping experiences, researchers confirmed that the high concentrations of aldehydes found in other studies aren’t limited to laboratory conditions.

“Our new pilot study underlines the potential health risk associated with the aldehydes generated by e-cigarettes,” said Samburova. “In the future, e-cigarette aldehyde exposure absolutely needs to be studied with a larger set of participants.”

The study, “Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results,” was published on August 7th in the journal Toxics and is available here: https://www.mdpi.com/2305-6304/6/3/46/htm#app1-toxics-06-00046. DOI: 10.3390/toxics6030046

This research was independently funded by DRI and conducted in DRI’s Organic Analytical Laboratory located in Reno, Nevada. For more information about the Organic Analytical Lab, visit: https://www.dri.edu/oal-lab.

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit  www.dri.edu.

OAL Participates in Toxic Metals Monitoring Campaign

OAL Participates in Toxic Metals Monitoring Campaign

Dave Campbell, Associate Research Scientist at the DRI’s Division of Atmospheric Sciences and the Organic Analytical Lab member, participated in a 5-week long monitoring campaign near Paramount, CA, sponsored by the South Coast Air Quality Management District and conducted in collaboration with Aerodyne Research Inc.

Dave used Steam-Jet Aerosol Collector – long Pathlength Absorbance Spectroscopy (SJAC-LPAS) instrument developed by Dr. Khlystov to perform real-time on-line measurements of hexavalent chromium concentration in the air, while riding aboard Aerodyne Mobile Laboratory.

Dr. Andrey Khlystov wins Society for Research on Nicotine & Tobacco New Investigator Award

Dr. Andrey Khlystov wins Society for Research on Nicotine & Tobacco New Investigator Award

Dr. Andrey Khlystov has been named a “2018 New Investigator Award Winner for Best Abstract” by the Society for Research on Nicotine & Tobacco for his presentation “The Effect of Puff Topography and Power Settings on Aldehyde and Carbon Monoxide in E-cigarette Aerosols”. The award was presented at the Society’s annual meeting in Baltimore, MD. Dr. Khlystov is the Director of the Organic Analytical Laboratory and a Research Professor of Atmospheric Chemistry at DRI. Two other OAL members presented posters at the SRNT meeting: Dr. Vera Samburova (“Carbonyl Compounds in Exhaled E-cigarette Aerosols”) and Dr. Yeongkwon Son (“Indoor Air Quality in Electronic Cigarette Vape Shops”).

A few clarifications about our e-cigeratte study

A few clarifications about our e-cigeratte study

In the Organic Analytic Laboratory at DRI, our main specialty is sampling and detailed chemical analysis of organic air pollutants. Our team has more than 20 years of experience in this area.

E-cigarette research is new for us but involves similar sampling and analytical techniques. Having seen advertisements for e-cigarettes that claimed they are safe because liquids contain only FDA approved ingredients, we decided to apply our expertise to see what is in e-cigarette vapors. This resulted in the publication of the first set of results concerning the role of flavorings in aldehyde formation during vaping.

Following the publication of our paper, we received a lot of attention from media, the blogosphere, and individual vapers. This shows the importance of the problem and we are pleased to have made a contribution to the ongoing discussion of the pros and cons of vaping.

While the news coverage was generally accurate, we noticed some misunderstanding and misrepresentation of the study, especially in comment sections of media articles and on some blogs. For example, we were amazed to see some commenters suggesting that our study was sponsored by the tobacco industry. This is completely untrue. This was an internally funded study. None of us, nor the Desert Research Institute has any connection to the tobacco industry.

A recent blog post by Dr. Farsalinos was also brought to my attention. In his post, Dr. Farsalinos states that our “results contradict previous research on aldehyde emissions” and he makes other assertions that I would like to address here in more detail. By making this statement, Dr. Farsalinos revealed that (a) he is not up-to-date with the current literature, and (b) has not read our paper carefully, because we explicitly compare our results to other studies.

Aldehyde Concentrations

Our paper states (from the top of the right column of page four): “For example, maximal formaldehyde emissions observed in this study are approximately 2−7 times lower than the steady-state emissions measured by Sleiman et al.,9 who reported values ranging from 13000 to 48200 ng/mg. In terms of emissions per puff, our formaldehyde data [0.12−50 μg/puff (Table S3)] are comparable to values of 0.05−50 μg/puff reported by Gillman et al.6 and 30−100 μg/puff reported by Sleiman et al.9”

Yes, the highest observed concentrations in our study, which seem to have caused disbelief in some such as Dr. Farsalinos, are actually several times lower than those reported in another recent study (Sleiman et al.). In Sleiman et al., it is reported that the first few puffs significantly underestimate aldehyde emissions as the coil temperature needs time to come to steady state. Most if not all of the previous studies that reported low aldehyde concentrations did not include warm-up puffs. This is also discussed in our paper.

Flavoring Compounds

Our study also clearly states – “our results do not suggest that PG or VG produces no aldehydes, but that flavoring compounds are responsible for the main part of the emitted toxic aldehydes. Nondetects for unflavored liquids reported in this study are likely due to the small number of puffs that we have used in our measurements. By collecting more puffs per measurement, we could have quantified emissions for unflavored liquids. This quantification, however, is of minor consequence, as the flavored liquids produce significantly more aldehydes than unflavored ones do” (top of the left column on page 5).

We are not contesting the contribution of PG/VG to aldehyde formation. Our point is that flavorings cause significantly higher emissions.

The standard excuse (written about here – http://www.nejm.org/doi/full/10.1056/NEJMc1502242) of a “dry-puff” to explain aldehyde emissions cannot be applied to our study.

There is only one peer-reviewed paper that asserts that high aldehyde concentrations are due to dry puffs only and that these cause aversion in users. That paper was reviewed in just 11 days and methodological problems have been identified by other researchers – see a review by Shihadeh et al. here http://onlinelibrary.wiley.com/doi/10.1111/add.13066/full.

As was discussed above, the evidence is mounting that aldehyde levels in e-cigarette vapors could be dangerously high.

Reproducibility

While we do agree with Dr. Farsalinos that the strength of science lies in reproducibility of experimental results and we wish anyone success in reproducing our study, we strongly believe that science requires impartiality and an open mind. Statements such as “I should note that it is impossible to convincingly identify something that went wrong in this study” are derogatory and assume that our study is wrong.

We would also suggest Dr. Farsalinos reproduce studies by Sleiman et al., Gillman et al., and Jensen et al.

It should be also noted that aldehydes and their DNPH adducts are chemically unstable. Experience and utmost care are required to obtain accurate results.

While we are not interested in proving or disproving Dr. Farsalinos’ dry puff study, we have collected some preliminary data that contradicts conclusions of that study regarding high aldehyde levels causing an “unpleasant” sensation during vaping.

We are collecting data for secondary aldehyde exposure associated with vaping. To estimate secondary emissions, we collected exhaled breath from three research volunteers, who were asked to vape as they normally do in a real-life scenario. The results are shown in the unpublished graph below (DO NOT CITE).

The levels are comparable to what we have measured per puff. One volunteer produced higher concentrations because a different device was used. None of our volunteers complained about anything unpleasant during their vaping.

Drypuff

We continue working on characterizing other pollutants in e-cigarette vapors and have data collaborating the effect of flavoring additives we reported in the ES&T.

Stay tuned for more exciting results and important research findings from our team!

– Andrey Khylstov, Ph.D