California Snowlines On Track To Be 1,600 Feet Higher by Century’s End

California Snowlines On Track To Be 1,600 Feet Higher by Century’s End

California Snowlines On Track To Be 1,600 Feet Higher by Century’s End

May 30, 2023

Reno, Nev.

Shared with permission from Scripps Institution of Oceanography

Snowpack
Climate Change

DRI contributes to research concluding lower-elevation ski resorts could lose more than 70 percent of their natural snow supply

DRI’s Benjamin Hatchett, Ph.D, and Michael Dettinger, Ph.D., coauthored a new study in the journal Climate Dynamics that predicts dramatic changes for California’s future snowpack. The team combined seven decades of temperature and precipitation data with projections about climate change to examine the growing impact of atmospheric rivers, which tend to be warmer than other storms. With less snow in California’s future, there will be wide-ranging impacts on landscapes, ecosystems, and water availability for human communities. 

The snowline is an iconic component of mountains,” Hatchett says. “Its warming-driven upslope retreat poses numerous implications for the aspects of mountain environments we rely on for water resources, ecosystem function, and recreation. As the snowline moves upslope, increased winter runoff will occur at the expense of spring runoff, a change our current water management paradigm is not designed for. A longer snow-free environment will promote more severe wildfire activity at higher elevations and the numerous cascading impacts severe wildfire brings to ecosystems, life and property, and public health. Last, we will see recreation impacts such as shorter ski seasons, less available skiable terrain, and lower flows during the summer and fall, which when combined with other climate change impacts, negatively affects mountain economies.”

Below is the full press release from Scripps Institution of Oceanography. 

  

San Diego – March 25, 2023 –

This winter produced record snowfall in California, but a new study suggests the state should expect gradually declining snowpacks, even if punctuated with occasional epic snowfalls, in the future.

An analysis by Tamara Shulgina, Alexander Gershunov, and other climate scientists at UC San Diego’s Scripps Institution of Oceanography suggest that in the face of unabated global warming, the snowlines marking where rainfall turns to snow have been rising significantly over the past 70 years. Projections by the researchers suggest the trend will continue with snowlines rising hundreds of meters higher by the second half of this century. 

In the high Southern Sierra Nevada range, for instance, snowlines are projected to rise by more than 500 meters (1,600 feet) and even more when the mountains get precipitation from atmospheric rivers, jets of water vapor that are becoming an increasingly potent source of the state’s water supply. 

“In an average year, the snowpack will be increasingly confined to the peak of winter and to the highest elevations,” the study says.

Diminished snowfall is a consequence of a changing climate in which places like California will get an increasing portion of their winter precipitation as rain instead of snow. The authors said this study and related research suggest water resource managers will need to adapt to a feast-or-famine future. California’s water supply will arrive less through the gradual melt of mountain snowpack that gets the state through hot summers and more via bursts of rain and runoff delivered by atmospheric rivers, which are boosted by warming and are associated with higher snowlines than other storms.

Such events will further complicate the balancing act between protecting people and infrastructure from winter flooding and ensuring enough water supply during warmer summers.  

“This work adds insight into the climate change narrative of more rain and less snow,” said California Department of Water Resources (DWR) Climatologist Mike Anderson.  “DWR appreciates our partnership with Scripps to help water managers develop, refine, and implement adaptation efforts as the world continues to warm and climate change impacts are realized.”

The study, funded by the U.S. Bureau of Reclamation and the DWR, appears in the journal Climate Dynamics. 

“This is the longest and most detailed account of snow accumulation in California,” said Gershunov, “resolving individual storms over 70 years of observed weather combined with projections out to 2100.” 

The authors make note of what this could mean for ski resorts around the state if climate change progresses unabated. For example, Mammoth Mountain, at an elevation between 2,400 and 3,300 meters (7,900 – 11,000 feet), is projected to receive 28 percent less snowfall in the latter half of the century. Lower elevation ski resorts such as Palisades and Northstar, both near Lake Tahoe, span elevational ranges of around 1,900 and 2,700 meters (6,200 – 8,900 feet). They are projected to lose more than 70 percent of their snow accumulation in an average winter. 

“Observations and future climate projections show that already rising snowlines will keep lifting,” said Gershunov. “Epic winters will still be possible, though, and unprecedented snowfalls will ironically become more likely due to wetter atmospheric rivers, but they will be increasingly confined to the peak of winter and to the highest elevations of the Southern Sierra Nevada.” 

Study co-authors include Kristen Guirguis, Daniel Cayan, David Pierce, Michael Dettinger, and F. Martin Ralph of Scripps Oceanography, Benjamin Hatchett of the Desert Research Institute of Reno, Nev., Aneesh Subramanian of University of Colorado at Boulder, Steven Margulis and Yiwen Fang of UCLA, and Michael L. Anderson of the California Department of Water Resources.  

 

Scientists Discover Fire Records Embedded Within Sand Dunes

Scientists Discover Fire Records Embedded Within Sand Dunes

Scientists Discover Fire Records Embedded Within Sand Dunes

May 11, 2023

Reno, Nev.

Above: The Cooroibah wildfire sweeps down the Cooloola Sand Dunes in Australia. Photo by Michael Ford 

Fire History
Paleoclimate Research

The discovery could expand scientific understanding of fire histories
to arid regions around the world

Knowing how the frequency and intensity of wildfires has changed over time offers scientists a glimpse into Earth’s past landscapes, as well as an understanding of future climate change impacts. To reconstruct fire records, researchers rely heavily on sediment records from lake beds, but this means that fire histories from arid regions are often overlooked. Now, a new study shows that sand dunes can serve as repositories of fire history and aid in expanding scientific understanding of fire regimes around the world.

Published May 11 in Quaternary Research, the study is the first to examine sedimentary records preserved in foot-slope deposits of sand dunes. The research team, led by Nicholas Patton, Ph.D., a postdoctoral researcher now at DRI, studied four sand dunes at the Cooloola Sand Mass in Australia. Australia is one of the world’s most fire-prone landscapes, with a long history of both natural and cultural burning, and vast expanses without lakes or ponds to gather sedimentary records from. The researchers aimed to prove that these sand dune deposits could be used to reconstruct reliable, multi-millennial fire histories. These previously unrecognized archives could potentially be used in arid regions around the world to fill knowledge gaps in places where fire shapes the landscape.

“Many fire and paleoclimate records are located where there’s a lot of water bodies such as lakes, peats, and bogs,” Patton says. “And because of this, most global models really have a bias towards temperate regions.”

An illustration showing how charcoal layers accumulate in dune foot-slope deposits

Above: An illustration showing how charcoal layers accumulate in dune foot-slope deposits. Credit: Nicholas Patton/DRI

The Cooloola Sand Mass consists of enormous – up to 240-meter-tall – sand dunes that build up at the coast and gradually shift inland from the power of the wind. By identifying the age of the dunes using a technique called optically stimulated luminescence dating, or OSL, Patton’s team found that the four dunes span the Holocene, representing the last approximately 12,000 years.

Once a dune is stable, meaning it is no longer growing but slowly degrading, the force of gravity acts on the dune slopes to collect falling sand at the base, along with the remnants of charcoal from local fires that deposited on the dune’s surface. This sediment builds up over time, layering charcoal from fire events that can be reliably identified using radiocarbon dating.

“We were digging soil pits at the base of the dunes and were seeing a lot of charcoal – more charcoal than we expected,” says Patton. “And we thought maybe we could utilize these deposits to reconstruct local fires within the area.”

Patton found that on the younger dunes (at 500 years old and 2,000 years old), charcoal layers represented individual fires, because the steep slope of the dunes quickly buried each layer. However, the older dunes (at 5,000 years old and 10,000 years old) had more gradual slopes that blended charcoal from different fires over time, providing a better understanding of periods of increased or decreased fire frequency.

The dunes offered localized fire histories from within an approximate 100-meter radius, so fire records vary somewhat amongst the four dunes, which spanned approximately 2 kilometers. However, Patton’s team compared their results to other fire records from the region found in lake and swamp deposits. Similar to the regional records, their findings showed three major periods of fire activity over the past 7,000 years.

The researchers write that similar records are likely held in sand dunes around the world, and that regions like California and the Southwest U.S. could benefit from a better understanding of regional fire history. Embedded within the fire records is not only information about natural wildfires, but also the way that humans influenced fire regimes.

“Fire histories are important for understanding how fire was used in the past for cultural purposes, whether that was to clear fields for agriculture or for hunting,” Patton says.

Patton hopes to continue this line of research at other dunes near the Cooloola Sand Mass that are nearly 1 million years old to obtain a long-term fire history for the region. Because Australia has had human communities for at least 60-70 thousand years, and quite possibly longer, these records could help understand the relationship between humans and historical fire regimes.

“These kinds of long-term records aren’t always available within lake sediments, but they might be available within these dune deposits,” Patton says. “That’s pretty exciting.”

 

###

 

More information: The full study, Reconstructing Holocene fire records using dune foot-slope deposits at the Cooloola Sand Mass, Australia, is available from Quaternary Research.
DOI: https://doi.org/10.1017/qua.2023.14

 

Study authors include: Nicholas Patton (DRI/Univ. of Canterbury, NZ/Univ. of Queensland, AUS), James Shulmeister (Univ. of Canterbury, NZ/Univ. of Queensland, AUS), Quan Hua (Australian Nuclear Science and Technology Organization), Peter Almond (Lincoln University, NZ), Tammy Rittenour (Utah State Univ.), Johanna Hanson (Univ. of Canterbury, NZ), Aloysius Grealy (Univ. of Queensland, AUS), Jack Gilroy (Univ. of Queensland, AUS), Daniel Ellerton (Univ. of Queensland, AUS/Stockholm Univ.)

 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

 

DRI Aims to Increase Scientific Access to Earth Monitoring Data With Re-Launch of ClimateEngine.org

DRI Aims to Increase Scientific Access to Earth Monitoring Data With Re-Launch of ClimateEngine.org

DRI Aims to Increase Scientific Access to Earth Monitoring Data With Re-Launch of ClimateEngine.Org

May 8, 2023

Reno, Nev.

Satellite Data
Climate Data

ClimateEngine.org allows researchers and natural resource managers to easily analyze and visualize complex satellite and climate data, helping users understand change  
in Earth’s landscapes over time  

The combined use of satellite and climate data has rapidly become critical for scientists and resource managers seeking to accurately assess changes in land cover and land use over time and across space. Unfortunately, processing such vast amounts of data can be time and cost-prohibitive, which is why researchers teamed up with Google and federal agencies to create ClimateEngine.org. Climate Engine’s innovative web application allows scientists, natural resource agencies, and other users to create maps and time series plots that integrate satellite and climate data, providing an indispensable — and free — tool for visualizing complex datasets.  

“If you’re trying to study how climate and natural resource management affects the environment, nothing beats the combination of maps and time series for unpacking the data,” says Justin Huntington, Ph.D., Climate Engine project lead and research professor of hydrology at DRI. 

First launched in 2016 at the White House Water Summit, ClimateEngine.org is being re-launched with new datasets, support resources, and functionality to increase the capabilities and user-friendliness of the site. Interactive maps and data visualizations produced using decades of satellite data have been a cornerstone of the ClimateEngine.org app, and the new updates will make it easier than ever to use satellite, climate, and forecast data together. These enhanced resources will help Climate Engine’s diverse user community — which includes 12,000+ registered users from public agencies, non-profits, research institutions, and tribal governments — to better use the app to produce charts and maps of environmental indicators such as drought, fire risk, vegetation condition, and agricultural water use.  

A global map showing drought variables from satellite data

Above: The Climate Engine web application provides on-demand mapping and plotting of hundreds of climate and satellite variables, enabling real-time analysis and monitoring of vegetation, drought, snowpack, and other important environmental conditions. 

“As researchers trying to process and visualize many Earth observations together, we understand how difficult it can be to work with these large and disjointed datasets,” Huntington says. “So, we wanted to create a tool that would allow researchers and practitioners to spend more time making discoveries and impact using the best available science.” 

The Climate Engine app is unique in that it enables users to visualize and analyze vast amounts of data without the need to code, and results can be downloaded, shared, and recreated with a simple link. It overcomes the computational barriers many research institutions and public agencies face when using large datasets by using Google Earth Engine’s parallel cloud computing platform. 

Notable datasets recently added include: 1) ERA5 Ag, which enables calculation of global drought, snowpack, and water demand indicators in near real-time; 2) Rangeland Analysis Platform, a 37-year Landsat dataset of vegetation cover and biomass production for the continental U.S.; and 3) OpenET monthly evapotranspiration, which provides Landsat satellite maps of vegetation water use at field-scale across the Western U.S. 

As one of Climate Engine’s primary partners, NOAA’s National Integrated Drought Information System (NIDIS) uses the Climate Engine Application Programming Interface (API) to automatically create drought datasets shared on Drought.gov  

“Climate Engine is a powerful cloud solution that has enabled NOAA to rapidly create and disseminate critical climate and drought information in ways that were previously impossible,” says Steve Ansari, physical scientist with NOAA’s National Centers for Environmental Information. “The initial Faculty Research Award by Google, followed by funding from NOAA-NIDIS and other federal agencies, has led to a very fruitful and rewarding public-private partnership.” This partnership will continue to produce new datasets, processing capabilities, stakeholder engagement, and web application and API enhancements to advance research, drought monitoring, and early warning. 

Map of the continental US showing drought severity with a color scale

Above: The Climate Engine API is used by NOAA’s National Integrated Drought Information System to automatically update real-time drought maps featured on Drought.gov. 

The Bureau of Land Management (BLM) was also an early supporter of ClimateEngine.org due to the agency’s need to adopt a more data-driven approach to monitoring drought and informing grazing decisions. BLM has positioned itself as a leader in monitoring of federal lands through its investment in ground and satellite-based vegetation monitoring. Among other contributions, the agency supported the development of fieldscale trends of drought and vegetation conditions within the Climate Engine web application. BLM is continuing to support trainings and integration of the newest datasets into Climate Engine to provide resource managers with the latest information and science on drought and vegetation conditions. 

A map of the Western US showing trends in vegetation cover

Above: Many advanced calculations are available within the Climate Engine web application, such as per-pixel trends and confidence levels that can be applied to all datasets, including Rangeland Analysis Platform vegetation cover and production data, to assess change over time.  

Moving forward this summer, the ClimateEngine.org team will be adding even more features and functionality to the app, further expanding access to the API, and hosting several public agency webinars and in-person workshops across the Western U.S.  

ClimateEngine.org is a collaboration between DRI, UC Merced, Google, and federal partners. The science team includes: DRI researchers Justin Huntington, Britta Daudert, Jody Hansen, Thomas Ott, Kristen O’Shea, Charles Morton, Dan McEvoy, and Eric Jensen, as well as UC Merced researchers Katherine Hegewisch and John Abatzaglou. Find out more about the initiative, partnerships, and updates at ClimateEngine.org and Twitter @ClimateEngOrg, and see the initiative’s peer-reviewed publication 

 

### 

 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu. 

Climate Change is Already Impacting Stream Flows Across the U.S. 

Climate Change is Already Impacting Stream Flows Across the U.S. 

Climate Change is Already Impacting Stream Flows Across the U.S. 

April 25, 2023

Reno, Nev.

Streamflow
Climate change

DRI researchers examined more than 500 watersheds across the country and found that increased winter temperatures are driving more extreme fluctuations in streamflow 

Climate change is here, and scientists continue to discover new ways that the world around us is changing. In a new study published in the May issue of the Journal of Hydrology, DRI researchers show that altered weather patterns are impacting stream flows across the country, with implications for flooding, drought, and ecosystems.  

Led by Abhinav Gupta, Ph.D., a Maki postdoctoral fellow at DRI, the research examined how day to day variations in streamflow changed in more than 500 watersheds in the U.S. between 1980 and 2013. They found that increased winter temperatures have driven the changes, with impacts varying due to local climate and amongst snow and rain-dominated watersheds. This information is important, the researchers say, for helping water managers adapt to climate change’s impacts.  

“We wanted to understand how climate change has impacted the hydrological balance across the U.S. based on the observed data,” Gupta says. “Once we understand how climate change has impacted stream flows in the recent past, we can figure out what kind of changes we might see in the future.” 

Streams receive water from a variety of sources, including fast, direct input from rainfall, and groundwater that gradually seeps through springs and soil. To understand how climate change is altering stream flows over time, the authors needed to differentiate between normal variability, like seasonal changes, and longer-term trends. To do this, they broke down stream inputs into events that occur at different timescales, like hourly and daily (rainfall), vs monthly and annual (groundwater). Then, they looked at trends for each timescale to see how they changed over time.  

“Once we understand how these trends are evolving, we can make educated guesses about what exactly is changing in the watershed – whether it is snowmelt, surface runoff, base flow, or one of many other factors,” says Gupta. “Without studying streamflow in this way (what is called streamflow statistical structure) it’s not possible to study all of these components together, at once.” 

Their results show that snow-dominated watersheds across the country are receiving more precipitation as rain than historically. This means that streams now have more water coming in short bursts from rainstorms, rather than the slow trickle of melting snow. The shift to short-term stream inputs could also be attributed to faster snowmelt rates due to higher temperatures, the authors say.  

“In the past, streamflow changed very slowly over time,” Gupta says. “But now, because of climate change, we have faster fluctuations in streamflow, which means that we can have a lot of water in a very small amount of time and then we can have no water for a long period of time. These extreme swings are occurring more and more.” 

Although the researchers found increased temperatures and changes in rainfall in all watersheds, differences in local climate dictate how this influences streamflow. In humid locales like Florida and the Pacific Northwest, storm inputs decreased, as higher temperatures caused more evaporation, leading the soil to absorb more rainwater. In the Great Plains and Mississippi Valley, contributions to streams from slow, long-term inputs like groundwater are very low, likely also due to high evaporation rates. Arid watersheds saw an increase in the number of days each year without rainfall over the study period, as well as a significant increase in winter temperatures, making streamflow more sporadic.  

The study didn’t examine other variables that could impact how water moves through watersheds, like changes in forest cover that impact the amount of water used by plants, or soil type, which affects how quickly rainfall permeates into groundwater. Because each watershed is unique, with its own recipe of soil type, climate, and forest cover, “we cannot paint everything with the same brush,” Gupta says. “We need different strategies for different watersheds to adapt to changes in climate. Even within the same region, watershed impacts can vary.” 

More research is needed, the study authors say, to understand what is driving changes in streamflow. If streams are increasingly dependent on groundwater, this could impact how water managers regulate groundwater pumping for human use. “That’s the kind of thing we need to know moving forward, in terms of how we manage our water resources,” says Sean McKenna, Ph.D., study co-author, and Clark J. Guild, Jr. Endowed Chair and Director of hydrologic sciences at DRI. “Can we pump more groundwater, or do we need to be more careful because if we do, we could lose streamflow?” 

Gupta says that he plans to build on this research. “Based on this study, we have been able to identify watersheds across the U.S. that have changed. Now that we know which watersheds in our dataset have been affected by climate change, we can look at the future changes in those watersheds.” 

 

More information: Changes in streamflow statistical structure across the United States due to recent climate change is available from the Journal of Hydrology. DOI: https://doi.org/10.1016/j.jhydrol.2023.129474 

Study authors include: DRI researchers Abhinav Gupta, Rosemary Carroll, and Sean McKenna 

 

### 

 

About DRI  

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu. 

DRI and the Springs Preserve Launch Adult Science Education Series

DRI and the Springs Preserve Launch Adult Science Education Series

DRI and the Springs Preserve Launch Adult Science Education Series

April 4, 2023

Las Vegas, Nev.

Science at the Springs

Header Photo: The Springs Preserve in Las Vegas, NV. Photo by Renee Grayson (CC by 2.0)

DRI Science at the Springs –a new multimedia science storytelling series– explores environmental research, personal narratives, and climate solutions

DRI, in partnership with the Springs Preserve, announces the launch of DRI Science at the Springs. In the series, which launches on April 20, DRI scientists and other guests address some of the world’s most urgent concerns while also telling the tale of what it means to live in Nevada on the front lines of a changing climate. 

“We are excited to partner with the Springs Preserve in launching an adult science education opportunity, specifically related to weather, climate change, and resiliency,” said DRI President Kumud Acharya. “DRI Science at The Springs will explore environmental research, personal narratives, and climate solutions to address some of our most challenging environmental issues. We invite Southern Nevadans to join us for an unforgettable multimedia and storytelling experience that highlights the innovative research and solutions being implemented to address our pressing climate issues.” 

“We’re excited at the opportunity to join with DRI to expand on the educational programs presented at the Springs Preserve,” said Andy Belanger, director of public services. “This program provides an invaluable platform for us to continue educating and informing the community about the importance of science and how it touches our lives each day.” 

In 2023, DRI Science at the Springs will hold four events at the Springs Preserve’s Big Springs Theater:   

 

The Water Toolkit – Thursday, April 20, doors open at 6pm, presentation begins at 7pm 

As society grows increasingly concerned about the future of our water resources, DRI Science at the Springs offers a refreshing perspective. From the science of cloud seeding to the art of aquifer recharging, from the importance of urban forestry to the vital role of irrigation, this inaugural event is a unique opportunity to be at the forefront of the conversation about water and its future. 

 

The Art of Science – Thursday, June 15, doors open at 6pm, presentation begins at 7pm 

This evening is designed to highlight the intersection of creativity and science, and explore how the two often seemingly antithetical disciplines can lead to some of the most beautiful, innovative, and impactful solutions. This is a one-of-a-kind opportunity to broaden your understanding of the world and the role that science and art play in shaping it. You’ll leave the event with a deeper appreciation for the beauty that can be found in the scientific process, and how it can inspire us all to think more creatively about the world around us.  

 

History Written in Ice – Thursday, August 24, doors open at 6pm, presentation begins at 7pm 

This evening is dedicated to exploring the incredible story of ice core researchers and their journey to the arctic to extract ice cores that hold within them evidence of past societies, volcanic eruptions, and even plagues. You’ll learn about the incredible lengths that researchers go to in order to extract these cores, the technological advances that have made this work possible, and the impact that their discoveries have had on our understanding of history. 

 

Beyond the Horizon – Thursday, October 5, doors open at 6pm, presentation begins at 7pm  

In this final event in our season, DRI Science at the Springs departs from Earth and takes you on a journey to explore the beyond. Join our speakers as they share stories and research of hitchhikers on the International Space Station, how a symbiotic relationship between a fungus and bacteria might be the key ingredient in developing a sunscreen for the Red Planet and more. 

 DRI Science at the Springs is made possible through generous support from our sponsors Nevada Health Link and CORE Construction 

 

Ticket Types and Pricing: 

Single Event Pricing  

$25 Non-member  

$20 Springs Preserve Members  

$15 Springs Preserve Donor Members – (Gold and Platinum donor members receive a free pair of tickets to one of the four events) 

 

Series Pricing (tickets to all four speaking engagements, limited amount) 

$80 Non-members 

$65 Springs Preserve Members   

$50 Springs Preserve Members Donor Members 

 

Tickets may be purchased through the Springs Preserve website or at the door the evening of the event.  

 DRI Science at the Springs is an adult-only (over 21) event. There will be a no-host beer and wine bar and snack shop. Food and beverage are not included in the ticket price.  

 

### 

 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu. 

  

About Springs Preserve 

Located at the site of Las Vegas’ original water source, the Springs Preserve is a 180-acre cultural institution that celebrates Las Vegas’ dynamic history while focusing on its sustainable future. Visitors to the Springs Preserve will discover boundless opportunities to explore ancient and modern history, natural landscapes, archaeological sites, native plants and animals, and current water resource challenges. The campus includes the OriGen Museum, Nevada State Museum, two interactive exhibition spaces (WaterWorks and Boomtown 1905), a colorful botanical garden, art gallery, kids’ learning center, natural trails system, restored wetlands, seasonal butterfly habitat, preserved historical structures, and trackless train rides.. For more information, please visit www.springspreserve.org.  

A Reconstruction of Prehistoric Temperatures for Some of the Oldest Archaeological Sites in North America

A Reconstruction of Prehistoric Temperatures for Some of the Oldest Archaeological Sites in North America

A Reconstruction of Prehistoric Temperatures for Some of the Oldest Archaeological Sites in North America

March 29, 2023

Reno, Nev.

Paleoclimatology

Header Photo: View of autumn in Wrangell St. Elias National Park, Alaska

Scientists used a new technique that examines temperature records stored in bacteria to better understand the environmental conditions that may have led to the earliest human migrations into the Americas

 Scientists often look to the past for clues about how Earth’s landscapes might shift under a changing climate, and for insight into the migrations of human communities through time. A new study offers both by providing, for the first time, a reconstruction of prehistoric temperatures for some of the first known North American settlements.

The study, published in Quaternary Science Reviews, uses new techniques to examine the past climate of Alaska’s Tanana Valley. With a temperature record that reaches back 14,000 years, researchers now have a glimpse into the environment that supported humans living at some of the continent’s oldest archaeological sites, where mammoth bones are preserved alongside evidence of human occupation. Reconstructing the past environment can help scientists understand the importance of the region for human migration into the Americas.

“When you think about what was happening in the Last Glacial Maximum, all these regions on Earth were super cold, with massive ice sheets, but this area was never fully glaciated,” says Jennifer Kielhofer, Ph.D., a paleoclimatologist at DRI and lead author of the study. “We’re hypothesizing that if this area was comparatively warm maybe that would have been an attractive reason to come there and settle.”

Kielhofer conducted the research during her doctoral studies at the University of Arizona, and was attracted to the Alaska location because of the wealth of research expertise being focused on the area. She also saw an opportunity to contribute to scientific understanding of a part of the world that is particularly sensitive to global climate change.

“We have to look to the past to try to better constrain how these areas have responded previously,” she said, “and how they might respond in the future under climate scenarios that we predict.”

Earlier research had relied on coarse temperature records by examining changes in vegetation and pollen. However, this information can only provide a general sense of whether a region was warming or cooling over time. To obtain a more precise history of temperatures, Kielhofer examined soil samples from the archeological sites. Using a technique known as brGDGT paleothermometry, she examined temperature records stored in bacteria to obtain a record of mean annual air temperature above freezing with a precision within about 2.8 degrees Celsius.  

“Bacteria are everywhere,” she said. “That’s great because in areas where you might not have other means of recording or assessing past temperature, you have bacteria. They can preserve for millions of years, so it’s a great opportunity to look at pretty much anywhere on Earth.”  

The results were surprising, she said, because many scientists had previously believed that the region experienced large swings in temperature, which may have contributed to the movement of early humans. But Kielhofer’s data showed that temperatures in the Tanana Valley remained fairly stable over time.  

“The region wasn’t really responding to these global scale climate changes as we might expect,” she said. “Because temperatures are really stable through this record, we can’t necessarily use temperature as a way to explain changes in human occupation or adaptation through time, as scientists have previously tried to do.” 

Kielhofer’s now turning her attention to other historical records, like changes in aridity, that could help explain how conditions in this region influenced early human communities.   

### 

 

More information: The full study, BrGDGT temperature reconstruction from interior Alaska: Assessing 14,000 years of deglacial to Holocene temperature variability and potential effects on early human settlement, is available from Quaternary Science Reviews. https://doi.org/10.1016/j.quascirev.2023.107979 

 

Study authors include: Jennifer Kielhofer (DRI/University of Arizona), Jessica Tierney (Univ. of Arizona), Joshua Reuther (Museum of the North, Univ. of Alaska Fairbanks), Ben Potter and Charles Holmes (Univ. of Alaska Fairbanks), François Lanoë (Univ. of Arizona), Julie Esdale (Colorado State), Matthew Wooller and Nancy Bigelow (Univ. of Alaska Fairbanks).  

Jennifer Kielhofer takes careful samples from a soil pit in Alaska's Tanana Valley.

Above: Jennifer Kielhofer sampling for charcoal and biomarkers (GDGTs) at Keystone Dune in Alaska, one of the study sites as well as one of the older archaeological sites in the area (dating back ~13,000 years). 

New Study Sheds Light on Ancient Microbial Dark Matter

New Study Sheds Light on Ancient Microbial Dark Matter

New Study Sheds Light on Ancient Microbial Dark Matter

March 21, 2023

Reno, Nev.

Shared with permission from the University of Nevada, Las Vegas

Omnitrophota
Microbial Dark Matter

Header Photo: Obsidian Pool in Yellowstone National Park. Credit: Bob Lindstrom. Photo in the Public Domain

DRI contributes to international team of scientists that unearths first in-depth look at Omnitrophota, one of the world’s oldest and tiniest bacteria 

DRI’s Duane Moser, Ph.D., is a coauthor on a new study in Nature Microbiology that offers the first detailed analysis of a globally prominent, but poorly characterized type of bacteria belonging to a group scientists refer to as “microbial dark matter.” Formally described here for the first time as the Omnitrophota, the existence of this phylum of bacteria was first inferred from environmental DNA nearly thirty years ago.    

This paper illuminates the properties and ecological function of a group of ubiquitous, but poorly understood organisms,” said Moser, associate research professor of microbiology.  

Moser’s contribution to the study included identifying field sites and collecting samples, as well as developing an understanding of environmental context. His long-standing research relationship with the lead authors of the study meant that collaborative projects over the years led to a number of useful datasets for the analysis.  

“The research community has followed the Omnitrophota story since the 1990s, when earlier groundbreaking studies that revealed unexpected diversity within Archaea at Obsidian Pool in Yellowstone National Park were expanded to include bacteria,” Moser says. “In those days, full genomes of uncultivable microorganisms were beyond the reach of available technologies, so a conserved gene that encodes an essential structure shared by all cellular life (the 16S rRNA gene) was used to identify novel life and estimate relatedness between organisms.” 

“What scientists found was so different from anything that had been described previously that scientists of the time proposed that Omnitrophota might be a novel phylum within Bacteria (the equivalent of the evolutionary difference between plants and animals). This interpretation has stood the test of time,” Moser continued.  

“Over the past several decades, Omnitrophota has been frequently encountered in aquatic and soil samples worldwide. In our own work in springs, mines, and shallow groundwaters, Omnitrophota have often been among the more prominent microbial groups detected. I sometimes wonder if the sheer abundance and evident diversity of this omnipresent group has intimidated researchers from tackling its formal description. This was an ambitious project that required the combined expertise of a strong team of collaborators.”   

Brian Hedlund, a microbiologist at the University of Nevada, Las Vegas, and lead author of the study, said “Duane’s knowledge of the geology and hydrology of subsurface environments — and how to sample them meaningfully — was really important for this study.” 

Below is the full press release from the University of Nevada, Las Vegas.   

  

LAS VEGAS – March 16, 2023 – Bacteria are literally everywhere – in oceans, in soils, in extreme environments like hot springs, and even alongside and inside other organisms including humans. They’re nearly invisible, yet they play a big role in almost every facet of life on Earth.  

Despite their abundance, surprisingly little is known about many microorganisms that have existed for billions of years.  

This includes an entire lineage of nano-sized bacteria dubbed Omnitrophota. These bacteria, first discovered based on short fragments of DNA just 25 years ago, are common in many environments around the world but have been poorly understood. Until now.  

An international research team produced the first large-scale analysis of more than 400 newly sequenced and existing Omnitrophota genomes, uncovering new details about their biology and behavior. The team’s findings are reported in the March 16 issue of the journal Nature Microbiology 

“We now have the most comprehensive view to date of the biology of an entire phylum of microorganisms and the surprising role they play in the Earth’s ecosystems,” said UNLV microbiologist Brian Hedlund, the study’s corresponding author. “There is a finite number of major lineages of life on our planet, and it’s exciting to learn more about organisms that pre-date plants and animals and have been essentially hidden under our noses.”  

The tricky thing with Omnitrophota is that they’re still largely considered microbial dark matter, which means they exist in nature but can’t yet be cultivated as single species in lab studies. Just two species have been microscopically observed, and only very recently.  

To present a comprehensive picture of their biology, scientists compared 349 existing and 72 newly mapped genomes of Omnitrophota. This included a review of publicly available data and new samples collected from geothermal environments, freshwater lakes, wastewater, groundwater, and springs located around the world.   

The team observed that, in most cases, Omnitrophota measure less than 450 nanometers, which places them among the smallest of all known organisms. They also displayed genetic markers consistent with symbiosis – possibly as predators or parasites of other microorganisms, which suggested they would have high metabolic rates. Indeed, when isotope uptake was measured as a proxy for metabolic activity, Omnitrophota were hyperactive.  

“Despite how little we collectively knew about Omnitrophota, they’ve long been cited by microbial ecologists. Our goal was to finally drag this lineage out of the dark,” said Cale Seymour, a recent UNLV master’s graduate and the study’s lead author. “The more we learn about their energy conservation pathways and possible lifestyles, the closer we get to our goal of cultivating them in the lab and bringing them into the light.”  

The study, “Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota,” appeared March 16 in the journal Nature Microbiology. Additional collaborating organizations include Bigelow Laboratory for Ocean Sciences, the University of North Alabama, the U.S. Department of Energy’s Joint Genome Institute, Desert Research Institute, Northern Arizona University, Sun Yat-sen University, University of Science and Technology of China, and University of Queensland. 

 

 

Christine Albano Receives Board of Regents 2023 Rising Researcher Award

Christine Albano Receives Board of Regents 2023 Rising Researcher Award

Christine Albano Receives Board of Regents 2023 Rising Researcher Award ​

March 10, 2023
Reno, Nevada

 

2023 Rising Researcher

DRI scientist Christine Albano, Ph.D., is the recipient of the 2023 Rising Researcher Award from the Nevada System of Higher Education (NSHE) Board of Regents

DRI scientist Christine Albano, Ph.D., is the recipient of the 2023 Rising Researcher Award from the Nevada System of Higher Education (NSHE) Board of Regents, in recognition of her outstanding early-career accomplishments and potential for advancing scientific knowledge in the field of earth and environmental sciences.

Dr. Albano is an Assistant Research Professor in DRI’s Division of Hydrologic Sciences, where her work focuses on understanding the impacts of atmospheric rivers and other extreme atmospheric events on the hydrology of landscapes over time.

“I’m incredibly grateful for this award,” Albano said. “I’ve so appreciated the mentorship and support I’ve received from DRI management and colleagues over the past several years. It’s a place where I’ve felt encouraged to do work that I think is interesting and important.”

DRI scientist Christine Albano, Ph.D

DRI scientist Christine Albano, Ph.D

Dr. Albano began at DRI as a Ph.D. student and dedicated her dissertation work to improving our understanding of how atmospheric rivers impact water storage and flood risk in the Sierra Nevada and Great Basin regions. She has continued to expand her research interests, using her background in conservation biology and ecology to connect extreme hydrologic events to impacts on ecosystems in new and novel ways. In 2022, she published ground-breaking work quantifying changes in evaporative demand across the U.S. over the last 20 years, and the implications for irrigated agriculture.

Dr. Albano has published 28 peer-reviewed journal articles and reports, with two more in review. She has worked with countless research teams, partners, and stakeholders to complete projects funded by agencies such as the NSF, USDA, U.S. Army Corps of Engineers, and several federal land management agencies. She finds that working with state and federal agencies to develop research approaches that lead to improved conservation and sustainable use of natural resources is the most rewarding aspect of her work.

“Dr. Albano’s innovative research has already made her a leader in her field,” said DRI Vice President for Research Vic Etyemezian, Ph.D. “In addition to publishing her research in high-impact peer-review journals, she brings so much to both DRI and the broader community by communicating her research results with the media and the public.”

In addition to her impressive research portfolio, Albano utilizes her experience working with non-profit conservation organizations to include community stakeholders in the scientific process. She contributes to mentoring the next generation of scientists by serving on the Graduate Program in Hydrologic Sciences faculty and is mentoring her first Ph.D. student. She also teaches advanced climatology in the UNR graduate school and has led workshops teaching the R programming language to undergraduate students at UNR and Salish Kootenay College.

Dr. Albano holds a B.S. in biology with minors in chemistry and environmental studies from Westminster College, and a M.S. in ecology from Colorado State University. Her Ph.D. in hydrology was completed in 2019 under the mentorship of DRI and UNR’s Maureen McCarthy and Michael Dettinger. She continued in DRI’s ecohydrology lab working alongside Justin Huntington for her postdoctoral research and became an Assistant Research Professor in 2020.

###

About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

 

First-ever layered lake-sediment sample extracted from subglacial Antarctica

First-ever layered lake-sediment sample extracted from subglacial Antarctica

First-ever layered lake sediment sample extracted from subglacial Antarctica 

March 9, 2023

Golden, Colorado

Shared with permission from the Colorado School of Mines

Subglacial Lakes Antarctica
Header Photo Credit: Matthew Siegfried

Sample gives important details into past dynamics of the Antarctic ice sheet and its cold, dark ecosystems

DRI’s Mark Hausner, Ph.D., is a coauthor on a new study detailing the first layered lake-sediment sample taken from a subglacial lake in Antarctica. Hausner stepped in to assist the project team — dubbed SALSA for Subglacial Antarctic Lakes Scientific Access — after a difficult deployment created challenges in recovering temperature data from their equipment.

“I worked with the team after their return to recover the best temperature data we could,” Hausner says. Although precise temperature observations couldn’t be recovered, Hausner’s expertise with fiber-optic distributed temperature sensing cables enabled him to identify changes in the data that were consistent with other observations. 

“Using multiple observation methods really increases your confidence in what you’re seeing,” he says. “In this case, satellite observations, surface geophysics, and the temperature profile through the ice and into the lake all tell the same story of a lake underneath 1 km of ice that’s switching from draining to filling.”

Below is the full press release from the Colorado School of Mines.

 

Since the discovery 50 years ago of subglacial lakes in Antarctica — some of the least accessible geological features on Earth — scientists have attempted to extract lake bed sediment to learn about the formation, movement, and past conditions of the ice sheet. Now, a team of researchers with the NSF-funded project Subglacial Antarctic Lakes Scientific Access (SALSA) has successfully done so, recovering the first layered sediments from beneath the modern Antarctic ice sheet.

Their findings from analysis of the sediment sample, published March 9 in Geology, give important insight into the larger dynamics of the Antarctic ice sheet and its history, including when the ice sheet was smaller than its current size. Their work adds to the sedimentary record of knowledge of Antarctica and also holds implications for understanding how Antarctica may contribute to global sea level change.

Previous studies of modern subglacial lakes were limited to the timescale of the modern ice sheet due to the challenge of sampling an environment locked beneath thousands of feet of ice. The sediment sample extracted by the SALSA team will allow researchers to better understand subglacial activity across almost two centuries, instead of merely two decades.

“There are places on Earth that we still haven’t explored,” said Matthew Siegfried, assistant professor of geophysics at Colorado School of Mines and a lead author of the paper. “We have now one sample trying to understand an environment that is one and a half times the size of the continental United States. It’s like pulling up a rock in New Orleans and understanding how the Mississippi River and its entire basin has acted for the past 1,000 years.”

The saga of the SALSA team’s quest to explore subglacial lakes is chronicled in “The Lake at the Bottom of the World,” a feature-length documentary film released across multiple streaming platforms on February 28 by the team in partnership with Metamorph Films. The NSF-funded film gives viewers a close look at how the scientists conducted their work amid harsh Antarctic conditions.

‘Like grabbing a package of soup’

Researchers captured the sediment sample on a field expedition in December 2018. They cleanly bored a hole through over 3500 feet of ice over Mercer Subglacial Lake by filling a modified fire hose with sterilized water at nearly 200 °F and aiming it into the ice. They carefully collected sediment cores through a borehole that was constantly freezing back in using a device modified from its typical use in “normal” lakes to fit in a narrow ice borehole.

While researchers knew that even the mere extraction of the sediment from the lake would be a success, the fact that a sample arrived at the lab intact proved even more gratifying.

“We didn’t expect to find this mushy, fragile sediment under the ice sheet,” Siegfried said. “It was basically like grabbing a package of soup, bringing it up 1100 meters to the surface of the ice, shipping it to America, getting it into a CT scanner in Oregon, and somehow maintaining tiny laminations in the sample.”

Previous sediment samples from beneath the modern West Antarctic Ice Sheet have only consisted of a jumbled mixture of marine muds and rocks left behind when glaciers move over the Earth and do not contain a layered history of the region or ice sheet.

“In a 2001 paper published after a decade of subglacial drilling efforts in Antarctica, glaciologist Barclay Kamb somewhat unenthusiastically summarizes that everywhere the project sampled sediments, they found the same uninteresting, sticky, gray mixture,” said Ryan Venturelli, assistant professor of geology and geological engineering at Colorado School of Mines and a lead author on the paper.

“We found that, too. But above that same sticky, gray stuff, we found something different for the first time.”

Understanding subglacial movement

CT imagery of the sample showed a pattern of contrasts that indicated the subglacial lake was filling and draining with water before the scientists’ observational record. This finding offers insight into how long water has been moving under this part of Antarctica — movement that has implications for how the ice sheet moves and contributes to sea level rise. The life cycle of subglacial lakes derived from these contrasts also will enable researchers to better identify how carbon, nutrients and dissolved gasses are transported through the subglacial system to the global ocean.

“We use sediments from normal (subaerial) lakes all the time to build records of regional changes in climate. Subglacial lakes are different, because they are sealed by an overlying ice sheet that shields them from changing seasons and changing climate. Any variation in the subglacial sediment record is driven by changes to the overlying ice sheet and associated water system,” Venturelli said.

“Thanks to satellites that have helped us spy on Antarctica from space since 2003, we have a deep understanding of subglacial lake activity in the modern record, but the sediments we collected as part of SALSA give us an idea of how persistent these features are on a much longer timescale — hundreds of years. It’s our first insight into the life cycle of an active subglacial lake, and that is really exciting,” Venturelli added.

Significance of the sampling effort

The findings shared in Geology come amid more groundbreaking publications from the SALSA team based on the sediment samples they retrieved from Mercer Subglacial Lake. In February, researchers published work in ISME Communications that examined and compared microbial communities in the sediment to other regions under the ice; their work indicated an extensive subglacial ecosystem that is biogeochemically and evolutionarily linked through ice sheet behavior and the transport of microbes, water and sediments. Forthcoming research out soon in AGU Advances, also led by Venturelli, constrains the Antarctic subglacial carbon cycle for the first time and indicates how details of the cycle can be used to estimate how much smaller the West Antarctic Ice Sheet was in the last few thousand years.

“Knowing the dynamics of the ice sheet in the past is critical for predicting how it may respond to changes in the future, but this information has also helped to better understand the connectedness of these ecosystems to processes on the surface and regions beneath deep Antarctic ice that have yet to be explored,” said Brent Christner, a microbiologist at the University of Florida and SALSA Project team member.

 

DRI Announces Space Education Trainings for Nevada Teachers

DRI Announces Space Education Trainings for Nevada Teachers

DRI Announces Space Education Trainings for Nevada Teachers

March 1, 2023
RENO, Nevada

Space Education
Education Trainings
Teacher Trainings

Above: Beautiful colorful space background. Watercolor. 

Credit: WhataWin, iStock.

DRI is pleased to announce “Space Education Educator Professional Development Training,” available for 80 educators. The training will be conducted in Las Vegas and Reno by four Nevada educators who were selected to attend the NASA Space Exploration Educators Conference in Houston in February. In addition to touring NASA facilities, the conference provided hands-on training in lesson plans and activities, and these educators will use the knowledge they gained to teach Nevada teachers.

“DRI is pleased to offer NASA-approved space education training to Nevada teachers,” said DRI STEM Education Program Manager Emily McDonald-Williams. “These educators are bringing their knowledge and experience back to share with educators statewide through two free professional development training courses for Nevada’s teachers. In addition, both trainings offer continuing education credits for attending educators.”

The trainings will provide lesson plans, resources, and hands-on engagement in space-based lesson plans that are grade-banded and Next Generation Science Standards aligned. Educators will leave prepared to integrate NASA-approved learning into their classrooms. Topics include the upcoming Artemis mission, Deep Space Discovery, Gravity Wells, and more.

Reno Training:

April 15, 2023

DRI’s Reno Campus

2215 Raggio Parkway Reno, NV 89512

K – 5th grade educators: 10 a.m. – noon

Lunch is available for all attendees from noon – 1 p.m.

6th – 12th grade educators 1 – 3 p.m.

Las Vegas Training:

April 22, 2023

DRI’s Las Vegas Campus

755 E Flamingo Rd, Las Vegas, NV 89119

K – 5th grade educators: 10 a.m. – noon

Lunch is available for all attendees from noon – 1 p.m.

6th – 12th grade educators 1 – 3 p.m.

 

science training session for teachers

Two female teachers participate in an activity at a training session.

Credit: DRI.

 ### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Arsenic Contaminates Private Drinking Water Wells Across the Western Great Basin

Arsenic Contaminates Private Drinking Water Wells Across the Western Great Basin

Arsenic Contaminates Private Drinking Water Wells Across the Western Great Basin 

February 21, 2023
RENO, Nevada

Arsenic 
Water Wells
Western Great Basin

Above: Researchers test a private well water for traces as metals such as arsenic in Washoe Valley, Nevada. 

Credit: Monica Arienzo/DRI.

A New Study Maps Risk of Elevated Arsenic Levels in Groundwater Wells Across Northern Nevada, Northeastern California, and Western Utah

 

In the arid and drought-stricken western Great Basin, sparse surface water means rural communities often rely on private groundwater wells. Unlike municipal water systems, well water quality in private wells is unregulated, and a new study shows that more than 49 thousand well users across the region may be at risk of exposure to unhealthy levels of arsenic in drinking water.  

Led by researchers at DRI and the University of Hawai’i Cancer Center and published February 16th in Environmental Science and Technology, the study used data from groundwater wells across the western Great Basin to build a model to predict the probability of elevated arsenic in groundwater, and the location and number of private well users at risk. According to the study, the Carson Desert basin (including the town of Fallon, Nevada), Carson Valley (Minden and Gardnerville, Nevada), and the Truckee Meadows (Reno), have the highest population of well users at risk. The new study builds on previous research showing that 22% of 174 domestic wells sampled in Northern Nevada had arsenic levels exceeding the EPA guideline.  

“What we are finding is that in our region, we have a high probability for elevated arsenic compared to most other regions in the country,” said Daniel Saftner, M.S., a hydrogeologist at DRI and lead author of the study. “And we are seeing that geothermal and tectonic processes that are characteristic of the Great Basin contribute to the high concentrations of naturally occurring arsenic in the region’s groundwater.”   

The region’s mountains are also primary sources of arsenic. “As the arsenic-rich volcanic and meta-sedimentary rocks that form the mountains erode, sediment is transported to the valleys below,” says Steve Bacon, Ph.D., DRI geologist and study co-author. Water percolating through the valley floor then carries arsenic into the groundwater. Deeper, older groundwater and geothermal waters tend to have a higher arsenic concentration and can migrate upward along faults and mix with shallow groundwater. 

“We really wanted to better understand the unique geologic factors that contribute to high arsenic in this study,” Saftner says. “It’s important for us to think about the role of the environment as it pertains to human health – where we live can influence what our long-term health looks like.”  

To train and test the predictive model, the research team used data collected through the Healthy Nevada Project, including water samples from 163 domestic wells primarily located near Reno, Carson City, and Fallon. These data were supplemented with 749 groundwater samples compiled from the USGS National Water Information System. The model uses tectonic, geothermal, geologic, and hydrologic variables to predict the probability of elevated arsenic levels across the region.  

Although the U.S. EPA has set an arsenic concentration guideline of 10 µg/L for public drinking water, previous research has shown a range of health effects from long-term exposure to levels above 5 µg/L. Using this concentration as the benchmark, the model and map show that much of the region’s groundwater – particularly in western and central Nevada – is predicted to have more than a 50% probability of elevated arsenic levels.  

“Community members can use our arsenic hazard map to see what the risk is at their location, which might motivate them to test their well water,” says Monica Arienzo, Ph.D., associate research professor at DRI and study co-author. “Then, if they have high levels of arsenic or other contaminants, they can take steps to reduce their exposure, such as installing a water treatment system.”  

The findings from this study are potentially useful for a range of different applications. “The results can be useful for water utilities or water managers who tap similar shallow aquifers for their water supply,” says Saftner, “as well as irrigation wells that source water from these aquifers.”   

The research team plans to use their model to take a closer look at the health impacts of prolonged arsenic exposure. “Through the Healthy Nevada Project, genetic data and health records are paired with environmental data to help determine whether there are associations between the levels of arsenic in a community’s groundwater and specific health outcomes,” stated Joe Grzymski, Ph.D., research professor at DRI and principal investigator of the project.  

 

hydrographic basin boundaries map

Map showing the hydrographic basin boundaries and predicted average population density with arsenic ≥5 μg/L in (a) the entire western Great Basin; (b) Truckee Meadows (Reno area), Lemmon Valley, and Cold Spring Valley; (c) Carson Valley (Minden and Gardnerville areas); and (d) Carson Desert (Fallon area).

Credit: DRI.

graph displaying predictable probably of arsenic in aquifers in western great basin

Predicted probability of arsenic ≥5 μg/L in alluvial aquifers of the western Great Basin, including (a) mean probability of arsenic ≥5 μg/L, (b) 95% confidence upper bound, and (c) 95% confidence lower bound. Bedrock aquifers and lakes are shown in gray and were not included in the arsenic hazard assessment.

Credit: DRI.

More information:

The full study,Predictions of Arsenic in Domestic Well Water Sourced from Alluvial Aquifers of the Western Great Basin, USA,” is available from Environmental Science and Technology: https://doi.org/10.1021/acs.est.2c07948 

Study authors include: DRI researchers Daniel Saftner, Steve Bacon, Monica Arienzo, Erika Robtoy, Karen Schlauch, Iva Neveux, and Joseph Grzymski, as well as Michele Carbone with the University of Hawaii Cancer Center. 

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About the University of Hawaiʻi Cancer Center

The University of Hawaiʻi Cancer Center through its various activities, including scientific research and clinical trials, adds more than $57 million to the Oʻahu economy.  It is one of only 71 research institutions designated by the National Cancer Institute.  An organized research unit within the University of Hawaiʻi at Mānoa, the UH Cancer Center is dedicated to eliminating cancer through research, education, patient care and community outreach with an emphasis on the unique ethnic, cultural, and environmental characteristics of Hawaiʻi and the Pacific.  Learn more at https://www.uhcancercenter.org.  Like us on Facebook at https://www.facebook.com/UHCancerCenter.  Follow us on Twitter @UHCancerCenter.

Wildfires Are Increasingly Burning California’s Snowy Landscapes and Colliding with Winter Droughts to Shrink California’s Snowpack

Wildfires Are Increasingly Burning California’s Snowy Landscapes and Colliding with Winter Droughts to Shrink California’s Snowpack

Wildfires Are Increasingly Burning California’s Snowy Landscapes and Colliding with Winter Droughts to Shrink California’s Snowpack

February 1, 2023
RENO, Nevada

Wildfires
Winter Drought
Snowpack

Above: Burned trees on a snowy mountain. The trees in the photo were burned by the Caldor Fire.  

Credit: Anne Heggli/DRI.

A new study shows that midwinter dry spells lead to dramatic losses of winter snowpack in burned areas 

The early pandemic years overlapped with some of California’s worst wildfires on record, creating haunting, orange-tinted skies and wide swathes of burned landscape. Some of the impacts of these fires are well known, including drastic declines in air quality, and now a new study shows how these wildfires combined with midwinter drought conditions to accelerate snowmelt.   

In a study published Jan. 20 in Geophysical Research Letters, a DRI-led research team examined what happens to mountain snowpacks when sunny, midwinter dry spells occur in forests impacted by severe wildfire. The researchers found a substantial increase in wildfires burning in California’s snowy landscapes throughout 2020 and 2021, when large blazes like the Dixie, Caldor, and Creek fires concentrated in snow zones. Using a 2013 midwinter dry spell as comparison, they found that similar weather in the winter of 2021-2022 led to 50% less snow cover. The compounding impacts of wildfire on snow melt include an increase in sun exposure due to loss of forest canopy, and a reduction in the snow’s ability to reflect sunlight.  

“It’s already established that wildfires are increasing spring snow melt, but we wanted to know what happens when you add a long winter dry spell on top of that,” said Arielle Koshkin, M.S., a Ph.D. student now at the Colorado School of Mines who co-led the study as part of her master’s research at DRI and the University of Nevada, Reno. “The Caldor fire burned in our backyard, it was so close to where we live and work. So, the following winter, we wanted to investigate what it looked like.” 

Satellite data showed that compared to the 2001-2019 average, 2020 and 2021 saw a nearly ten-fold increase in wildfires burning in California’s seasonal snow zones. “What that implies is that there’s this increasing overlap between the fire and snow and there’s all these cascading and compounding impacts on the system and especially the hydrology,” said Ben Hatchett, Ph.D., a climatologist at DRI who co-led the study with Koshkin. “This huge increase of fire activity in California snowy regions is exactly what we expect to see more of going forward.”  

A strong winter drought followed during the winter of 2021-2022, when Tahoe City experienced a 46-day long midwinter dry spell (the second-longest since reliable records began in 1917; the long-term median is 22 days without precipitation). A comparable midwinter drought following a wet start to the winter occurred in 2013, giving the researchers the ability to compare and contrast the impacts under more typical conditions with those that occurred in a severely burnt landscape.  

“In 2013 and 2022, we had very similar weather patterns, but we didn’t see notable melt in 2013. And in 2022, we also did not see melt in unburned areas,” Hatchett said. “So that gives two lines of evidence suggesting that it’s the fire and not the meteorology that’s driving this.” 

Forests where severe wildfires have burnt the tree canopy have more exposed snowpacks, which enhances the melting caused by sunny days and warm nights (another recent DRI study examined the snowmelt impacts of spring heatwaves). Snowmelt is further exacerbated by the loss of the snowpack’s albedo, or the natural power of white snow to reflect, rather than absorb, the sun’s radiation. Particularly in the winters immediately following a wildfire, snow is dusted with the black carbon of burnt vegetation, which can accelerate snowmelt rates by up to 57%.  

The enhanced snowmelt was so pronounced within the perimeter of the Caldor fire that the researchers found a total of 50 fewer days with snow cover in the winter of 2021-2022 – the lowest number of snow cover days on record.  

Following a wildfire, “there are two timescales of interest: right after the fire, the loss in albedo really dominates,” said Hatchett. “But impacts from the loss of canopy last for decades, maybe longer if the forest does not recover.” 

The enhanced snowmelt midwinter creates challenges for forecasting water availability from the natural snowpack reservoir. During the winter months, water managers need to leave room in reservoirs to prevent flooding; this means that earlier snowmelt may not be captured for later use in the dry season. Studies like this provide water managers with the tools to make more accurate predictions of the timing and magnitude of snowmelt.  

The fires have made major landscape disturbance that we’re not taking into account in our forecasting abilities,” Koshkin said.I think this study is showing that wildfire impacts are huge, and we need to implement this into our ability to understand how water runs off the landscape. It’s part of our world and it’s increasing and it’s going to affect more snowy places. So, it’s important to make sure that we understand the outcomes in our models and management plans.” 

Koshkin plans to expand on this research for her Ph.D. studies by examining regional variation of fire impacts on snow. She notes that how wildfire impacts snowmelt in the Sierra Nevada may look different in Colorado or Idaho, due to different weather and snowpack conditions.  

The researchers emphasize that the wildfire impacts seen in this study are the result of high-severity wildfires, and not lower-severity burns like prescribed fires. “This study really highlights the importance of bringing fire back onto our landscape in the sense that we need fire – good fire is the answer to our wildfire problem,” Hatchett says. “Bringing a more natural regime of fire, through prescribed and cultural fire, back onto our landscape will help reduce the likelihood of future severe fire.” 

“We can recognize that this could be our new normal,” Koshkin said, “but we also have the ability to adapt and manage and mitigate as much as possible.” 

 

Scientists measure albedo on a snowy mountain

Study authors Arielle Koshkin and Ben Hatchett measure albedo in the Sierra Nevada foothills. 

Credit: Anne Heggli/DRI.

More information:

The full study, Midwinter dry spells amplify post-fire snowpack decline, is available from Geophysical Research Letters:  https://doi.org/10.1029/2022GL101235 

Study authors include: Benjamin Hatchett (DRI), Arielle Koshkin (DRI/UNR), Kristen Guirguis (Scripps Institution of Oceanography), Karl Rittger (CU Boulder), Anne Nolin (UNR), Anne Heggli (DRI), Alan Rhoades (Lawrence Berkeley National Lab), Amy East (USGS), Erica Siirila-Woodburn (Lawrence Berkeley National Lab), W. Tyler Brandt (Scripps Institution of Oceanography), Alexander Gershunov (Scripps Institution of Oceanography), and Kayden Haleakala (Scripps Institution of Oceanography/UCLA).  

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

A Changing Flood Recipe for Las Vegas

A Changing Flood Recipe for Las Vegas

A Changing Flood Recipe for Las Vegas

January 18, 2022
LAS VEGAS, Nevada

Urbanization
Climate Change
Flooding

Above: Las Vegas after thunder storm with flood water in November 2019. Photo Credit: 4kodiak, iStock. 

A new study shows that urbanization and climate change are changing the strength and seasonality of flooding in the Las Vegas region

Las Vegas, with its rapid urbanization and desert landscape, is highly vulnerable to flooding. For this reason, flood managers have built an extensive system of drainage ditches and detention basins to protect the public. Now, a new study shows how intentional engineering and urban development are interacting with climate change to alter the timing and intensity of flood risk.

In a study published Jan. 6 in The Journal of Hydrometeorology, researchers from DRI, the Clark County Regional Flood Control District, the University of Wisconsin- Madison, and Guangdong University of Technology examine Las Vegas’ changing flood regime. Their results show that flood intensity has increased since the mid-20th century, with an abrupt shift occurring in the mid-1990s. Climate change has also shifted flood seasonality, with the storms and their resultant floods now occurring more frequently in winter, in contrast with the historically stronger summer monsoon season.

“When I looked at the data for annual flood peaks, I could see that something is changing,” said Guo Yu, Ph.D., lead author on the new study and hydrologist at DRI. “I wanted to understand the reason for this change as well as the physical mechanisms driving it, because that will help water managers and the public understand whether such a change will continue in the future, given climate and land use changes here.”

Las Vegas is one of the fastest growing metropolitan regions in the country. In 1950, fewer than 35 thousand people resided in the region; by 2020, that number grew to 2.6 million. Like many cities in the arid Southwest, development centers on the valley floor and spreads up into the natural topography of the surrounding mountains. As concrete and pavement replace more porous desert soils, the risk of flooding in human communities rises – catastrophic floods have caused fatalities as recently as 2022. To mitigate this risk, the Clark County Regional Flood Control District constructed a complex series of storm drains and culverts to capture and direct the flow of water away from populated areas and toward Lake Mead.

Over the same period, climate change has led to shifts in seasonal rainfall patterns. The Southwest has two distinct flood seasons: winter floods produced by atmospheric rivers and summer floods linked to the North American monsoon. Since 1950, daily rainfall amounts have increased in winter and decreased in the summer months.

“Historically, people in Las Vegas haven’t paid as much attention to winter floods as to summer floods,” Yu said. “But our research shows that there will be more frequent winter floods happening because of climate change. This is because the warmer sea surface temperatures on the Pacific coast will cause more atmospheric rivers, like what we’re seeing this January in California. And when these are positioned to bypass the Sierra Nevada mountains, they will very likely hit Las Vegas and cause severe winter rainfall and floods.”

The new research demonstrates an overall picture of shifting intensity and seasonality of floods in Las Vegas. The study authors are continuing to refine their understanding of flood risk in the region with an upcoming study, currently under review, that examines changing rainfall patterns in more detail.

“A lot of research focuses on a single driver – either land use or climate – but in Las Vegas, our study shows that both are changing and interacting with each other,” said Yu.

More information:

The full study, The Nonstationary Flood Hydrology of an Urbanizing Arid Watershed, is available from The Journal of Hydrometeorology: https://doi.org/10.1175/JHM-D-22-0117.1

Study authors include: DRI researchers Guo Yu, Julianne Miller, Benjamin J. Hatchett, and Markus Berli; as well as Daniel B. Wright (University of Wisconsin, Madison); Craig McDougall (Clark County Regional Flood Control District); and Zhihua Zhu (Guangdong University of Technology, Guangzhou, China).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu

The DRI Foundation Welcomes New Trustees for 2023

The DRI Foundation Welcomes New Trustees for 2023

The DRI Foundation Welcomes New Trustees for 2023

January 10, 2022
RENO, Nevada

DRI Foundation
Board of Trustees
DRIF

The DRI Foundation is pleased to welcome the following new members to its Board of Trustees, each serving a four-year term beginning January 1, 2023:

These board members were formally approved at the December NSHE Board of Regents meeting and will serve alongside existing DRI Foundation board members Kristin McMillan Porter (Chair), Stephanie Kruse (Vice Chair), Michael Benjamin (Past Chair), Robert McCart (Treasurer), Nora James (Secretary), Richard Ditton, John Entsminger, Robert Gagosian, James King, Janet Lowe, Terry Shirey, Ronald Smith, and Karen Wayland.

The DRI Foundation Board of Trustees is comprised of dedicated individuals committed to helping advance DRI’s mission. In 2022, Foundation leadership invested heavily in cultivating a strong and diverse pool of trustee candidates who are well-positioned to make an impact. These efforts led to an increase in board diversity in areas such as gender, ethnicity, age, and geographic location. These individuals will work in close collaboration with President Kumud Acharya and the Office of Advancement to engage and build relationships with new and existing supporters to further DRI’s work across Nevada and around the world.

“We welcome our new trustees to the DRI Foundation Board and extend our deepest thanks and appreciation to our outstanding current trustees,” said DRI President Dr. Kumud Acharya. “The expertise and commitment to philanthropy of the DRI Foundation Trustees play an essential role in building and maintaining relationships that are crucial to funding and promoting the impactful environmental work of DRI research to people and environments in Nevada and around the world.”

“I am honored to lead the DRI Foundation Board of Trustees in supporting DRI’s mission to be a home for science that creates a better future,” said DRI Foundation Chair Kristin McMillan Porter. “We welcome our new Trustees and look forward to the great value that they will bring to our organization.”

 

DRI Foundation Chair Kristin McMillan Porter

Headshot of DRI Foundation Chair Kristin McMillan Porter

###

About the DRI Foundation

The DRI Foundation serves to cultivate private philanthropic giving in support of the mission and vision of the Desert Research Institute. Since 1982, DRI Foundation trustees have worked with DRI benefactors to support applied environmental research to maximize the Institute’s impact on improving people’s lives throughout Nevada, the nation, and the world. For more information about the DRI Foundation or DRI, please contact Kristin Burgarello (Kristin.Burgarello@dri.edu) or Julie Mathews (Julie.mathews@dri.edu).

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu

Spring Sunny Heat Waves Caused Record Snowmelt in 2021, Adding to Severe Water Supply Impacts Across the Western U.S.

Spring Sunny Heat Waves Caused Record Snowmelt in 2021, Adding to Severe Water Supply Impacts Across the Western U.S.

Spring Sunny Heat Waves Caused Record Snow Melt in 2021, Adding to Severe Water Supply Impacts Across the Western U.S.

January 5, 2022
RENO, Nevada

Snowmelt
Spring Heatwaves
Mountain Snowpack

Above: Melting icicle on a snow covered pine branch at winter forest. Photo Credit: stsmhn, iStock.com

A new study highlights how persistent high pressure in April 2021 drove widespread rapid snow loss

Snow-capped mountains aren’t just scenic – they also provide natural water storage by creating reservoirs of frozen water that slowly melt into watersheds throughout the spring and summer months. Much of the Western U.S. relies on this process to renew and sustain freshwater supplies, and new research underscores the impacts of extreme weather conditions on this annual cycle.  

In a study published Jan. 5th in Environmental Research Letters, DRI researchers examine the role of spring heatwaves on the melting rates of mountain snowpacks across the West. They found that in April 2021, record-breaking snowmelt rates occurred at 24% of all mountain snowpack monitoring sites in the region, further compounding the impacts of extended drought conditions. Rapid snowmelt increases the time when our natural snowpack reservoir is emptied and when this water is most needed later in the warm season.

“One thing that stood out was the spatial pattern,” says Daniel McEvoy, Ph.D., DRI climatologist and co-author of the new study. “It wasn’t just one single mountain range or one part of the West – there were snowmelt records across the entire Western U.S., in all 11 states.” 

By examining data from mountain snowpack monitoring stations, the researchers found that between April 1 and May 1, record high temperatures caused dramatic decreases in snowpacks. Although record snowmelt rates occurred throughout the entire month of April, two heatwaves stood out. The first week of April saw maximum temperatures 4-6 degrees Celsius above average, driving the most widespread record snow melt centered on the Rocky Mountains. Another heatwave the third week of April centered on the Pacific Northwest, with maximum temperatures 5-8 degrees Celsius above average, primarily in the Cascade Range.   

“Summer heat waves are studied extensively, but people don’t often care as much about a spring heatwave because the actual air temperatures don’t usually lead to human health impacts,” McEvoy says. “But at the same time, they are creating these hydrological and climatological extreme impacts.” 

Several factors contributed to the rapid rate of snowmelt in the spring of 2021. On top of record high maximum temperatures, record high minimum temperatures prevented snowpacks from re-freezing at night, and clear, sunny skies exposed snow to the melting energy of the sun’s rays. The ongoing drought, already widespread in late 2020, also created parched soils that absorbed more of the spring snowmelt in 2021 before it could run off into streams and reservoirs or replenish groundwater.  

“What really motivated this study was that in May and June of 2021, I kept hearing from other climatologists, meteorologists, hydrologists, and even skiers, that ‘the snow really came off the mountains fast this year,’” McEvoy says. “I kept hearing that over and over again.” 

Although many snowpacks across the West were below average due to low winter snowfall, water resource managers were unable to forecast the exacerbating effects of the rapid spring snowmelt on water supplies. With reservoirs below expected levels based on early-season snowpack predictions, less water flowed to downstream users. Reduced water availability also impacted hydropower production, which made providing energy during the summer and fall heatwaves more challenging. By the end of summer 2021, 76% of the West was in severe drought, according to the U.S. Drought Monitor.

“This was one of several extreme climate events over the course of that year,” McEvoy says of the spring 2021 heatwave. “There was a compounding set of climate extremes that all contributed to this rapid expansion and intensification of the drought across the Western U.S. during the late spring and summer.” 

The researchers say these spring heatwaves are consistent with the long-term trend of spring warming across the West, and that because of this, April 1 may no longer be a reliable benchmark for evaluating snowpack levels and their seasonal contributions to western water supplies. 2021 was also an active wildfire season in California and the Pacific Northwest, consistent with previous research linking reduced mountain snowpacks and spring heatwaves with increased wildfire potential.

McEvoy says that future research will examine the impacts and frequency of spring heatwaves, as well as ways to predict them by looking at global atmospheric circulation patterns, such as the ones that cause La Niña.  

“Understanding the predictability of these types of snowmelt events would be helpful for both drought early warning and water resource management,” says McEvoy.  

More information:

The full study, Spring heat waves drive record western United States snow melt in 2021, is available from Environmental Research Letters 
https://iopscience.iop.org/article/10.1088/1748-9326/aca8bd 

Study authors include Daniel McEvoy and Benjamin Hatchett, both at DRI.  

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

DRI Leading $5 Million Regional Climate Adaptation Project

DRI Leading $5 Million Regional Climate Adaptation Project

DRI Leading $5 Million Regional Climate Adaptation Project

January 4, 2023
RENO, Nevada

CNAP
Climate Adaptation
Climate Resiliency

Above: Cloud of smoke from a California wildfire. CNAP’s projects will support adaptation needs to address some of the most pressing climate issues in the region including the public health impacts of wildfire smoke. 

DRI is partnering with Scripps Institution of Oceanography to build climate resiliency through the California Nevada Adaptation Program (CNAP)

The impacts of climate change have been acute in California and Nevada, with most of the last two decades spent in extended drought conditions and 2021 wildfires producing Reno’s worst recorded air quality in the 21st century. Adapting to these challenges will require not only focused research to better predict climatic events, but will also depend on empowering local communities to use this knowledge to make informed decisions in the face of adversity. With $5 million in funding from NOAA’s Climate Adaptation Partners initiative, the California Nevada Adaptation Program (CNAP) will spend the next five years bringing together researchers, community members, and practitioners to cooperatively conduct research and identify solutions.

For the first time, CNAP will be hosted in Nevada under the leadership of DRI’s Tamara Wall, Ph.D., research professor of atmospheric science and deputy director of the Western Regional Climate Center (WRCC). DRI’s long-standing partnership with Scripps Institution of Oceanography at the University of California San Diego will continue, with Dan Cayan, Ph.D., regional climate researcher and CNAP lead since its founding in 1999, and Julie Kalansky, Ph.D., who has served as CNAP program manager for six years, joining Wall to lead the project.

“The goal of CNAP has always been to expand more fully across the California and Nevada region,” Wall says. “This is the first time that DRI is leading CNAP, and it’s also the first time that CNAP is a system-wide effort. Bringing on partners from UNLV and UNR is important for meeting that goal and will help us address climate change impacts across the state.”

California and Nevada have partnered for the CNAP program since 2011, producing research and results that include: the first Nevada Climate Assessment; California’s Fourth Climate Change Assessment; recommendations for updating red flag warnings and the fire weather watch system; and analyses of water use and supply in California’s agricultural communities.

The next five years will focus on adaptation, with an intentional transition from statewide climate research toward preparing communities for local-level action to address regional climate hazards. Six projects will support adaptation needs to address four of the most pressing climate issues in the region: extreme heat, wildfire smoke, coastal flooding, and water scarcity. As part of the project’s commitment to equity and diversity, it will include a mentorship program within community colleges to prepare the future’s workforce to address climate impacts. In addition, a small grants program, Building Capacity through Reciprocity with Tribal Communities, will work to enact community-identified solutions for tribal communities by supporting a Leaders Indigenous Climate Fellowship Program.

“Centering CNAP’s research on adaptation allows us to focus on producing community-centered solutions,” Wall says. “Impacts from climate change are expected to amplify in the coming decades, and disadvantaged communities are the least able to manage those impacts without additional support. Our research includes community partners so that we can adequately understand community needs and concerns and actually improve people’s lives.”

Research Focus Areas

Extreme Heat

Highlights for planned research include creating the Southern Nevada Heat Resilience Lab (SNHRL), a regionally focused program that will bring together public service providers, including emergency responders and social services workers, with scientific experts on extreme heat. Real-time air temperature sensors will be installed in at-risk neighborhoods within Las Vegas, targeting locations such as public transit stops and buses, cooling centers, places with outdoor laborers, and unhoused communities. Following a trial period in Las Vegas, the project aims to expand local heat sensor networks to rural and Indigenous communities, where heat impacts are less well studied and understood

Water Resiliency

In order to help California prepare a more resilient workforce in the face of growing issues with water availability, CNAP will partner with community colleges in the San Joaquin Valley to create climate-related workforce training opportunities. The goal is to create a more climate-technical workforce to support community adaptation to changes in water availability and climate extremes.

Coastal Erosion

Southern California is lined with some of the most heavily used beaches on the West coast, and this region is likely to experience increased flooding and erosion due to sea-level rise. CNAP will partner with collaborators to explore nature-based solutions and Indigenous stewardship as coastal adaptation strategies.

Public Health in the Face of Extreme Heat and Wildfire Smoke

California and Northern Nevada are increasingly experiencing extreme weather conditions with overlapping heat waves and intense wildfires. CNAP will explore the public health impacts of these events by directly assessing a sample of households in Washoe County, Nevada. Research will include installing air sensors to monitor heat exposure and air pollution, conducting interviews to understand decision-making under environmentally challenging conditions, and baseline health monitoring.

Understanding Burnout in Climate Change Professionals

Previous CNAP research has shown that climate change professionals are experiencing high rates of burnout, and institutional support isn’t yet providing adequate resources to this population. CNAP will continue this line of study by evaluating the traits and communities that lead to more psychological resiliency and developing training materials based on the results for the CNAP team and partner networks.

State Climate Assessments

Both California and Nevada will likely produce new statewide climate assessments within the next five years, and CNAP will continue to coordinate among state and local efforts. CNAP will also pilot a mentoring program focused on early career faculty at universities and colleges in California and Nevada.

“NOAA Climate Adaptation Partnerships (CAP, formerly ‘RISA’) advances equitable adaptation through sustained regional research and community engagement,” says Caitlin Simpson, Program Manager, NOAA Climate Adaptation Partnerships. “Climate affects every part of society, and this is most visible to us when we see long-term changes in social and environmental conditions, increased unpredictability, and extreme weather events. We seek to help people plan for and adjust to a changing climate by supporting long-lasting partnerships among scientists, decision makers, and communities. The result is a shared understanding about society’s needs and the co-generation of credible and actionable knowledge to support community solutions. We work within regions composed of multiple US state/territory jurisdictions which share similar climates and cultures.”

“CNAP’s long history in the CAP/RISA program dates from 1997, and features many accomplishments, including substantial scientific contributions to all five of California’s climate assessments in close partnership with the state government. CNAP has achieved deep expertise on sea level rise, drought, water resources, and wildfire planning issues and has closely partnered with a number of federal and nonfederal partners to advance local, state, and regional planning around these issues. The NOAA Climate Program Office is thrilled to fund the California-Nevada Climate Applications Program (CNAP) team for another five years as a part of the CAP/RISA Network.”

 

CNAP logo

More information:

For additional information about CNAP visit: https://www.dri.edu/cnap/

CNAP Principal Investigators include Tamara Wall (DRI), Julie Kalansky (Scripps), and Daniel Cayan (Scripps).

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Nevada NASA Programs appoint new Project Director, Dr. Eric Wilcox

Nevada NASA Programs appoint new Project Director, Dr. Eric Wilcox

Nevada NASA Programs appoint new Project Director, Dr. Eric Wilcox

December 5, 2022
LAS VEGAS, Nevada

Nevada NASA Programs
EPSCoR
NSHE

Nevada NASA EPSCoR and Space Grant Consortium announce the new Project Director, Dr. Eric Wilcox. Following an internal statewide NSHE search, the Research Affairs Council approved the appointment of Dr. Wilcox, who will take on the role of Project Director while continuing his work at DRI, where he is a Research Professor of Atmospheric Science.

As the Project Director, Dr. Wilcox will lead the multi-year NASA EPSCoR Research Notice of Funding Opportunity (NOFO), Research Infrastructure Development (RID), Rapid Response Research (R3), potential other NASA EPSCoR Programs and NASA Space Grant projects. As per NASA requirements, the Project Director is the lead PI on NASA EPSCoR and Space Grant awards, providing financial, reporting, and evaluation oversight as well as administrative coordination as needed. In this role, Dr. Wilcox, will align system-wide NASA EPSCoR program activities with state and national priorities in STEM research and education.  These priorities will target research development, economic development and workforce development priorities for the state and NASA Directorates.

“Under the leadership of former project director, Dr. Lynn Fenstermaker, these programs have provided STEM education and NASA-related research opportunities for hundreds of students and dozens of faculty from across NSHE,” said Dr. Eric Wilcox. “I am grateful for the opportunity to contribute to continuing this legacy. I have spent much of my career as a scientist working at NASA, or as part of the broader community of academic researchers involved with NASA, and I am excited to serve in a role where I can grow the number of students and researchers in Nevada engaged with the NASA community.”

Since 2010, Dr. Wilcox has managed DRI’s atmospheric modeling group, leading a broad research program with basic research focused on particulate pollutants, clouds, and climate change, as well as applied research, focused on weather forecasting for industrial safety, agriculture, and renewable energy applications. In this role, he mentors a team of graduate students, postdoctoral researchers, and technicians, and has been awarded more than $3.1M in sponsored project expenditures at DRI since 2010 with greater than $3.6M in external funding from NASA to Nevada as principal investigator or co-investigator through 2025.

He serves as a member representative to the University Corporation for Atmospheric Research on behalf of the Nevada System of Higher Education and served as DRI’s Faculty Senate Chair in 2020, leading efforts to determine the long-term impacts of the COVID-19 pandemic on faculty and staff. He is also a member of the graduate faculty in the Interdisciplinary Atmospheric Sciences Program at UNR and teaches courses in Atmospheric Modeling and Atmospheric Physics.

Dr. Wilcox earned a Bachelor of Science degree in Physics at the University of California, San Diego (UCSD) and a Ph.D. in Oceanography at the Scripps Institution of Oceanography, UCSD. Prior to joining DRI in 2010, Dr. Wilcox was a physical scientist in the Climate and Radiation Laboratory at the NASA Goddard Space Flight Center and a postdoctoral fellow at the NOAA Geophysical Fluid Dynamics Laboratory at Princeton University. His research addresses the interactions among aerosols, clouds, and precipitation towards a goal of improved understanding of precipitation, cloud variability and radiative forcing of climate at regional scales. This work relies on satellite and in-situ observations, as well as simulations with numerical models of the atmosphere and climate.

 

eric wilcox headshot

Above: Eric Wilcox, Ph.D., was recently named the Project Director of the Nevada NASA NASA EPSCoR and Space Grant Consortium. 

### 

About NSHE

The Nevada System of Higher Education, comprised of two doctoral-granting research universities, a state college, four comprehensive community colleges, and one environmental research institute, serves the educational and job training needs of Nevada. NSHE provides educational opportunities to more than 100,000 students and is governed by the Nevada Board of Regents. The System includes the University of Nevada, Las Vegas, the University of Nevada, Reno, Nevada State College, Desert Research Institute, the College of Southern Nevada, Great Basin College, Truckee Meadows Community College, and Western Nevada College. For more information regarding NSHE please visit: https://nshe.nevada.edu/.

About the Nevada System Sponsored Programs and EPSCoR

The mission of the Nevada System Sponsored Programs and EPSCoR is to promote collaboration and multidisciplinary learning among NSHE institutions, and to enable alignment of efforts with the needs of the state to increase research and STEM competitiveness. The goal is to create new opportunities in the State of Nevada for workforce development and promote the development of Science, Technology, Engineering and Mathematics (STEM) disciplines for the state. For more information regarding Nevada EPSCoR please visit: https://epscorspo.nevada.edu/.

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Successful Citizen Science Weather Tracking Effort Goes National, Receives Three Additional Years of Funding From NASA

Successful Citizen Science Weather Tracking Effort Goes National, Receives Three Additional Years of Funding From NASA

Successful Citizen Science Weather Tracking Effort Goes National, Receives Three Additional Years of Funding From NASA

November 29, 2022
RENO, Nevada

Mountain Rain or Snow
Citizen Science
Weather Tracking

Mountain Rain or Snow Project Invites Community Observers Around the Country to Improve Winter Weather Predictions

Satellite technologies often struggle to differentiate snow from rain near the freezing point in mountainous regions, with impacts on flood predictions, avalanche forecasting, snowpack water storage, and road safety. To help improve these technologies, researchers from Lynker, DRI, and the University of Nevada, Reno are partnering with community observers to track winter storm activity across the country through a project called Mountain Rain or Snow. The project has been so successful at collecting data that demonstrates regional variation in the rain-snow threshold that NASA’s Citizen Science for Earth Systems Program is funding an additional three years.

The project began in 2019 as Tahoe Rain or Snow and expanded last year to include mountain regions across the country. Last winter, more than 1,100 people in the Sierra Nevada, Pacific Northwest, Rocky Mountains, and Northeast submitted real-time reports of rain, snow, or mixed precipitation. Community observers submitted 15,000 observations – a six-fold increase over the previous winter.

“Scientists have noticed that satellite predictions are not as effective as ground-based observations,” says Keith Jennings, Ph.D., water resources scientist at Lynker and the project lead. “Direct observations, made by people, are the most accurate way to discover how precipitation phase varies in time and space. We are filling an important gap with this project.”

Community members sign up to receive alerts when storms with predicted temperatures near freezing are in the forecast, and submit observations of the type of precipitation they are seeing via a web-based mobile phone app. These reports show that the Sierra Nevada region transitions from rain to snow around 36 degrees Fahrenheit, rather than around the freezing temperature of 32 degrees. In the Rockies, the snow-rain threshold is closer to 40 degrees, while it’s around 33 degrees in the Northeast. Expanding the project to include more regions will help scientists understand how the rain-to-snow temperature threshold varies according to local atmospheric conditions, improve scientists’ ability to make locally-relevant predictions, and improve the technology behind rain-snow estimates.

“With the help of community observers, we are amassing a very large database of ground-based observations. These will ultimately help to improve the predictive technologies that satellites use,” says Meghan Collins, M.S., associate research scientist at DRI. “The data the community observers have helped us collect is a big step towards being able to make those improvements. We understand the state of the problem much better now and will use the next three years to advance the solution.”

Mountain Rain or Snow welcomes new community observers as it expands to additional regions this season, including the Eastern Great Lakes; the Wasatch Range around Salt Lake City; and Western Montana around Missoula. To sign up, observers find the keyword that corresponds to their region at www.rainorsnow.org. Then, text the keyword to 855-909-0798 for guidance on how to participate.

Mountain Rain or Snow is a collaboration between Lynker, DRI, and the University of Nevada-Reno. In addition to the large network of community observers, the project team includes: Keith Jennings of Lynker; Monica Arienzo, Meghan Collins, and Benjamin Hatchett of DRI; Anne Nolin of the University of Nevada, Reno; and several student researchers. The group has expertise in hydroclimatology, hydrology, and geospatial analysis.

 

Mountain Rain or Snow information listed on a graphic

### 

About Lynker

Lynker delivers innovative solutions to support global environment security and economic prosperity as a trusted partner to governments, communities, industry, and nonprofits. We are a premier science, engineering, and technology company supporting some of the nation’s most important missions from atmosphere to ocean. We are scientists, engineers, conservationists, divers, observers, developers, technologists, educators, outreach specialists, artists, economists, policy specialists, and managers.

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About the University of Nevada, Reno

The University of Nevada, Reno, is a public research university that is committed to the promise of a future powered by knowledge. Nevada’s land-grant university founded in 1874, the University serves 21,000 students. The University is a comprehensive, doctoral university, classified as an R1 institution with very high research activity by the Carnegie Classification of Institutions of Higher Education. Additionally, it has attained the prestigious “Carnegie Engaged” classification, reflecting its student and institutional impact on civic engagement and service, fostered by extensive community and statewide collaborations. More than $800 million in advanced labs, residence halls and facilities has been invested on campus since 2009. It is home to the University of Nevada, Reno School of Medicine and Wolf Pack Athletics, maintains a statewide outreach mission and presence through programs such as the University of Nevada, Reno Extension, Nevada Bureau of Mines and Geology, Small Business Development Center, Nevada Seismological Laboratory, and is part of the Nevada System of Higher Education. Through a commitment to world-improving research, student success and outreach benefiting the communities and businesses of Nevada, the University has impact across the state and around the world. For more information, visit www.unr.edu

Scientists Uncover Conditions Key to Formation of the Great Barrier Reef

Scientists Uncover Conditions Key to Formation of the Great Barrier Reef

Scientists Uncover Conditions Key to Formation of the Great Barrier Reef

November 21, 2022
RENO, Nevada

K’gari
Sand Island
Great Barrier Reef

Above: Fraser Island, off Australia’s eastern Queensland coast, is the world’s largest sand island, stretching over 120km. Photo by John Natoli, istock.com.

Credit: John Natoli, iStock Photo.

New research shows that the growth of K’gari, the world’s largest sand island, was crucial for creating the clear waters that allowed the Great Barrier Reef to flourish.

Australia’s famed Great Barrier Reef is known for being the world’s largest coral reef – overflowing with marine life, it is the only living thing visible from space. Scientists have long sought to understand the conditions that led to the reef’s formation, as conditions seemed suitable long before the reef’s birth. Now, a new study claims the answer might be K’gari, the world’s largest sand island (also known as Frasier Island).

Nick Patton, Ph.D., a postdoctoral researcher now at DRI, teamed up with an international group of researchers from Sweden, New Zealand, Australia, and the United States for the study published Nov. 14 in Nature GeoScience. Their research showed that the sand island formed between 700,000 and 800,000 years ago, and that the reef was only able to establish once the island protected it from the northern flow of sand that naturally occurs in this area.

“The Great Barrier Reef is the world’s largest coral reef ecosystem, yet what I find so interesting is that we still do not really know what caused its initial inception,” says Daniel Ellerton, Ph.D., of Stockholm University and the study’s lead author. “Previous research has highlighted that several mechanisms are likely responsible and here we demonstrate an additional factor that should be considered.”

K’gari juts out like a finger from Australia’s eastern coast below the far southern reach of the Great Barrier Reef. The island itself is a UNESCO World Heritage area, covered with lush rainforest and freshwater dune lakes. It formed as wave action carried sediment north along the coast. As the sediment accumulated, the island formed a barrier that protected the coastal region to the north. Without the island, the coral reef would be covered in this drifting sand.

The timing of the island’s formation is due to a major shift in the Earth’s climate called the Mid-Pleistocene Transition, which saw glacial cycles extend from about 40,000 years to around 100,000. The longer cycle allowed for ice caps to grow larger, decreasing sea levels across the planet.

“Our work highlights how changes in sea-level variability approximately 700,000 years ago directly caused a dramatic reorganization of the coast and the formation of the Great Barrier Reef, as we know it today,” says Patton.

There is evidence that the Great Barrier Reef is around 650,000 years old, supporting the theory that K’gari directed sand away from Australia’s northeastern coast, providing the clear waters needed for coral growth.

To determine the age of K’gari, the researchers used a method called optically stimulated luminescence dating. This method provides an age estimate for the last time that sediments, like quartz sand, were exposed to light.

“These large coastal dune fields have rich geologic and climatic archives that provide important information on Earth’s history,” Patton says.

The research team engaged with the traditional inhabitants of K’gari and the adjacent Cooloola Sand Mass (the Butchulla and Kabi’ Kabi’ peoples, respectively) through an Australian Research Council Discovery Grant to understand the formation and evolution of these systems.

Studies that look back in time don’t only help us understand how ecosystems formed – they can also provide a glimpse into the possible future, the researchers say.

“Sea-level change is something we often hear about in the news, but I did not realize the sheer power of the ocean until working on this project,” Patton says. “As we observe in this study, rising and falling sea-levels have the ability to both create and destroy entire coastlines and ecosystems.”

“This research highlights the complex evolution of coastal environments over long timescales,” Ellerton says. “Coastlines globally are at risk from rising sea-levels under predicted global warming which poses a serious threat. If we are going to manage coasts and coral reefs under climate change scenarios, we need to understand how these complex responses occur.”

More Information:

The full study, Fraser Island and initiation of the Great Barrier Reef linked by Middle Pleistocene sea-level change, is available from Nature Geoscience: https://doi.org/10.1038/s41561-022-01062-6

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Footprints Claimed as Evidence of Ice Age Humans in North America Need Better Dating, New Research Shows

Footprints Claimed as Evidence of Ice Age Humans in North America Need Better Dating, New Research Shows

Footprints Claimed as Evidence of Ice Age Humans in North America Need Better Dating, New Research Shows

November 15, 2022
RENO, Nevada
Footprints
Dating
Ice Age Humans
Above: Closeup photographs of excavated human trackways from the shores of an ice age lake that once filled the Tularosa Basin in south-central New Mexico, in what is now White Sands National Park.
Credit: Jeff Pigati & Kathleen Springer, USGS.

The preserved footprints found in New Mexico’s Lake Otero Basin would upend scientific understanding of how, and when, humans first arrived in North America, if they are accurately dated. A new study brings the age claim into question.

The wide expanse of an ancient lakebed in New Mexico holds the preserved footprints of life that roamed millennia ago. Giant sloths and mammoths left their mark, and alongside them, signs of our human ancestors. Research published in September 2021 claimed that these footprints are “definitive evidence of human occupation of North America” during the last ice age, dating back to between 23 and 21 thousand years ago. Now, a new study disputes the evidence of such an early age.

Scientists from DRI, Kansas State University, the University of Nevada, Reno, and Oregon State University caution in Quaternary Research that the dating evidence is insufficient for claims that would so radically alter our understanding of when, and how, humans first arrived in North America. Using the same dating method and materials, the new study shows that the footprints could have been left thousands of years later than originally claimed.

“I read the original Science article on the human footprints at White Sands and was initially struck not only by how tremendous the footprints were on their own, but how important accurate dating would be,” says Charles Oviatt, emeritus professor of geology at Kansas State University and one of the new study’s authors. “I saw potential problems with the scientific tests of the dates reported in the Science paper.”

“It really does throw a lot of what we think we know into question,” says David Rhode, Ph.D., a paleoecologist at DRI and co-author of the new study. “That’s why it’s important to really nail down this age, and why we’re suggesting that we need better evidence.”

Archaeologists and historians use a number of methods to determine the timing of historic events. Based on these methods, scientists tend to agree that the earliest known dates of humanity’s colonization of North America lie between 14 and 16 thousand years ago, after the last ice age. If the original claims are correct, current chronological models in fields as varied as paleogenetics and regional geochronology would need to be reevaluated.

“23 to 21 thousand years ago is in a timeframe where you need to really pay attention to how people got into North America,” says Rhode. “At that time, there was a huge, mile-high mountain range of ice covering Canada to the north, and the pathway down the Pacific Coast wasn’t very accommodating either – so it may have been that people had to come here much earlier than that.”

By studying ancient DNA from human fossils and using rates of genetic change (a sort of molecular clock using DNA), paleogeneticists surmise that the American Southwest was first occupied no earlier than 20 thousand years ago. If the footprints are older, it throws into question the use and integrity of these genetic models. It’s possible that the ages from one study at a single site in a New Mexico lake basin are valid, and that age estimates from a variety of other fields are invalid, the authors write, but more robust evidence is needed to confirm the claims.

At the center of the debate are the tiny seeds of an aquatic plant used to age the footprints. The timeframe for the seeds was identified using radiocarbon dating methods, in which researchers examine a type of carbon known as Carbon-14. Carbon-14 originates in the atmosphere and is absorbed by plants through photosynthesis. These carbon isotopes decay at a constant rate over time, and comparing the amount of Carbon-14 in the atmosphere to the amount present in fossilized plant material allows scientists to determine their approximate age. But the plant species used, Ruppia cirrhosa, grows underwater and therefore obtains much of its carbon for photosynthesis not directly from the atmosphere as terrestrial plants do, but from dissolved carbon atoms in the water.

“While the researchers recognize the problem, they underestimate the basic biology of the plant,” says Rhode. “For the most part, it’s using the carbon it finds in the lake waters. And in most cases, that means it’s taking in carbon from sources other than the contemporary atmosphere – sources which are usually pretty old.”

This method is likely to give radiocarbon-based age estimates of the plant that are much older than the plants themselves. Ancient carbon enters the groundwater of the Lake Otero basin from eroded bedrock of the Tularosa Valley and the surrounding mountains, and occurs in extensive calcium carbonate deposits throughout the basin.

The authors demonstrated this effect by examining Ruppia plant material with a known age from the same region. Botanists collected living Ruppia plants from a nearby spring-fed pond in 1947 and archived them at the University of New Mexico herbarium. Using the same radiocarbon dating method, the plants that were alive in 1947 returned a radiocarbon date suggesting they were about 7400 years old, an offset resulting from the use of ancient groundwater by the plant. The authors note that if the ages of the Ruppia seeds dated from the human footprints were also offset by roughly 7400 years, their real age would be between 15 and 13 thousand years old – a date which aligns with ages of several other known early North American archaeological sites.

The dating of the footprints can be resolved through other methods, including radiocarbon dating of terrestrial plants (which use atmospheric carbon and not carbon from groundwater) and optically stimulated luminescence dating of quartz found in the sediment, the authors write.

“These trackways really are a great resource for understanding the past, there’s no doubt about that,” says Rhode. “I’d love to see them myself. I’m just cautious about the ages that the researchers put to them.”

More Information:

The full study, A critical assessment of claims that human footprints in the Lake Otero basin, New Mexico date to the Last Glacial Maximum, is available from Quaternary Research: https://doi.org/10.1017/qua.2022.38

Study authors include Charles Oviatt (K-State), David B. Madsen (UNR), David Rhode (DRI), and Loren G. Davis (OSU).

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About the University of Nevada, Reno

The University of Nevada, Reno, is a public research university that is committed to the promise of a future powered by knowledge. Nevada’s land-grant university founded in 1874, the University serves 21,000 students. The University is a comprehensive, doctoral university, classified as an R1 institution with very high research activity by the Carnegie Classification of Institutions of Higher Education. Additionally, it has attained the prestigious “Carnegie Engaged” classification, reflecting its student and institutional impact on civic engagement and service, fostered by extensive community and statewide collaborations. More than $800 million in advanced labs, residence halls and facilities has been invested on campus since 2009. It is home to the University of Nevada, Reno School of Medicine and Wolf Pack Athletics, maintains a statewide outreach mission and presence through programs such as the University of Nevada, Reno Extension, Nevada Bureau of Mines and Geology, Small Business Development Center, Nevada Seismological Laboratory, and is part of the Nevada System of Higher Education. Through a commitment to world-improving research, student success and outreach benefiting the communities and businesses of Nevada, the University has impact across the state and around the world. For more information, visit www.unr.edu.

Childhood Traumas Strongly Impact Both Mental and Physical Health

Childhood Traumas Strongly Impact Both Mental and Physical Health

HPN Renown and DRI Logos

November 8, 2022
RENO, NV

Childhood Trauma
Mental Health
Physical Health

Above: The logos for the Healthy Nevada Project, DRI, and Renown Health.

Credit: DRI.

Childhood Traumas Strongly Impact Both Mental and Physical Health

Adult risk for obesity, chronic pain, migraines, and mental disorders increases in proportion to the number and types of traumas experienced in childhood

The social environments we grow up in are critical when determining our wellbeing and health later in life. Most Americans (67%) report experiencing at least one traumatic event in childhood, and a new study shows that these experiences have significant impacts on our health risks as adults. Physical illnesses such as obesity and chronic pain are affected, but mental disorders show the most significant association, including post-traumatic stress disorder (PTSD), bipolar disorder, substance abuse, and depression.

Scientists from DRI and the University of Nevada, Reno, led the study, published on Oct. 6 in the journal Frontiers in Psychiatry. More than 16,000 people from the Reno area volunteered for the research as part of the Healthy Nevada Project, one of the most visible genomic studies in the United States powered by Renown Health. Participants answered questions about their social environments before age 18, including experiences with emotional, physical, or sexual mistreatment, neglect, and substance abuse in the household. The researchers combined this information with anonymized medical records to build on existing research about how childhood traumas affect health outcomes.

“The study provides insight as to how social determinants of health may influence adult health disorders,” said Robert Read, M.S., a researcher at the Center for Genomic Medicine at DRI and one of the study’s lead authors.

Nearly two-thirds (66%) of participants recalled at least one type of trauma, and almost one-quarter (24%) reported experiencing more than four. Women and people of African American and Latinx descent reported a higher prevalence of traumatic experiences than men and those with European ancestry, but people in low-income households were the most impacted.

Thirteen mental illnesses showed the most statistically significant associations, including mood disorders, depression, PTSD, anxiety disorders, eating disorders, schizophrenia, and substance abuse. For every reported type of abuse experienced in childhood, a participant’s risk for PTSD increased 47%. Each cumulative trauma also increased one’s risk for making a suicide attempt by 33%.

The researchers note that although the study is rooted in Nevada — which has high rates of adults with mental illness and poor access to care — it provides a window into deeply rooted public health issues across the nation.

“Combatting the prevalence of childhood traumas is a complex problem,” said Karen Schlauch, Ph.D., a bioinformatics researcher at DRI and one of the study’s lead authors. “Personal experiences with neglect and abuse are more challenging to address, but many of the underlying issues can be tackled at the community level, like food insecurity and poverty.”

Beyond improving our understanding of how early social environments influence our health, Schlauch says that the next target for research is understanding how childhood traumas may be linked with specific traits like impulsivity — a prominent trait in Nevada’s gambling communities.

“In order to address the devastating impacts of early-life adversity on local population health and inequities, we must focus on the dominant social and behavioral mechanisms affecting Nevadans,” said Stephanie Koning, Ph.D., an assistant professor at the School of Public Health at the University of Nevada, Reno, and study co-author. “Beyond how population needs drive our research, we are partnering with community-based organizations to promote evidence-based interventions across individual, community, and state levels.”

As the study team expands their analysis of the health impacts of early-life adversity, they are exploring how to use the Healthy Nevada Project database to inform community-based interventions. They’ve partnered with community institutional partners — including the Stacie Mathewson Behavioral Health & Addiction Institute and Northern Nevada HOPES — for research and advocacy focused on promoting healthy childhood social environments and well-being throughout an individual’s life.

More information: 

The full text of the study, Using phenome-wide association studies and the SF-12 quality of life metric to identify profound consequences of adverse childhood experiences on adult mental and physical health in a Northern Nevadan population, is available from Frontiers in Psychiatry: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583677/.

This project was funded by the Stacie Mathewson Behavioral Health and Addiction Institute, Renown Health, and the Renown Health Foundation. Study authors included Karen Schlauch (DRI), Robert Read (DRI), Stephanie Koning (UNR), Iva Neveux (DRI), and Joseph Grzymski (DRI/Renown Health).

For more information on the Healthy Nevada Project®, please visit: https://healthynv.org/.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Renown 

Renown Health is the region’s largest, locally governed, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org. 

About the University of Nevada, Reno

The University of Nevada, Reno, is a public research university that is committed to the promise of a future powered by knowledge. Nevada’s land-grant university founded in 1874, the University serves 21,000 students. The University is a comprehensive, doctoral university, classified as an R1 institution with very high research activity by the Carnegie Classification of Institutions of Higher Education. Additionally, it has attained the prestigious “Carnegie Engaged” classification, reflecting its student and institutional impact on civic engagement and service, fostered by extensive community and statewide collaborations. More than $800 million in advanced labs, residence halls and facilities has been invested on campus since 2009. It is home to the University of Nevada, Reno School of Medicine and Wolf Pack Athletics, maintains a statewide outreach mission and presence through programs such as the University of Nevada, Reno Extension, Nevada Bureau of Mines and Geology, Small Business Development Center, Nevada Seismological Laboratory, and is part of the Nevada System of Higher Education. Through a commitment to world-improving research, student success and outreach benefiting the communities and businesses of Nevada, the University has impact across the state and around the world. For more information, visit www.unr.edu.

DRI Recognizes Lily Hahn as the 2022 Peter B. Wagner Memorial Award-Winner for Women in Atmospheric Sciences

DRI Recognizes Lily Hahn as the 2022 Peter B. Wagner Memorial Award-Winner for Women in Atmospheric Sciences

DRI Recognizes Lily Hahn as the 2022 Peter B. Wagner Memorial Award Winner for Women in Atmospheric Sciences

November 3, 2022
RENO, Nevada

Wagner Award
Atmospheric Sciences
Lily Hahn

Above: The 2022 Wagner Award winner, Lily Hahn, presents her research during an award ceremony at DRI’s campus in Reno on November 2, 2022.

Credit: Jessi LeMay/DRI.

DRI is pleased to announce that the 24th annual Peter B. Wagner Memorial Award for Women in Atmospheric Sciences has been awarded to Lily Hahn of the University of Washington, Seattle. An award ceremony commemorating her achievement was held at the DRI campus in Reno on Nov. 2, 2022.

The Peter B. Wagner Memorial Award for Women in Atmospheric Sciences is an annual competition recognizing the published works of women pursuing a master’s or Ph.D. in the atmospheric sciences or any related program at a university in the United States. The award is presented to women graduate students with outstanding academic publications and includes a $1,500 prize. This award has been presented annually by DRI since 1998 and is the only such honor designated for graduate women in the atmospheric sciences in the United States.

Hahn, a Ph.D. student in the Department of Atmospheric Sciences at the University of Washington, Seattle, is receiving this award for her paper Seasonality in Arctic Warming Driven by Sea Ice Effective Heat Capacity. Hahn’s research investigates the processes that cause Arctic warming to peak during early winter under rising concentrations of atmospheric greenhouse gases. A fundamental cause of this warming pattern is the transition from frozen sea ice to open ocean, which maintains warmer temperatures later in the year and produces peak warming in early winter. This information is essential for developing accurate models for projecting the timing and extent of Arctic warming under climate change scenarios.

“I’m very excited to receive the Wagner Memorial Award,” Hahn says. “I’m grateful to the selection committee for their time and consideration, and to my advisors and coauthors for their collaboration and guidance. I really enjoyed this project as an opportunity to design idealized model experiments to isolate and understand the mechanisms of Arctic warming. It’s awesome to receive recognition, the opportunity to share this work at DRI, and inspiration to continue pursuing creative and impactful research as I wrap up my Ph.D.”

 

two female scientists smile at the camera

Lily Hahn (right) the 2022 recipient of the Peter Wagner Memorial Award for Women in Atmospheric Sciences, with Vera Samburova (left), Chair of Award Committee and Associate Research Professor at DRI.

Credit: Jessi LeMay/DRI.

Runners up for the 2022 award include: 2nd place – Lyssa M. Freese from the Department of Earth, Atmosphere and Planetary Sciences at the Massachusetts Institute of Technology for the paper Antarctic Radiative and Temperature Responses to a Doubling of CO2.

3rd place – Tehya Stockman from the Department of Civil, Environmental, and Architectural Engineering at the University of Colorado, Boulder for the paper Measurements and Simulations of Aerosol Released While Singing and Playing Wind Instruments; and Yingxiao Zhang from the Department of Climate and Space Sciences and Engineering at the University of Michigan for the paper Projected Climate-Driven Changes in Pollen-Emission Season Length and Magnitude Over the Continental United States.

About the Peter B. Wagner Memorial Award

Ms. Sue Wagner — former Nevada Gaming Commissioner, Nevada Lieutenant Governor, DRI Atmospheric Scientist, and widow of Dr. Peter B. Wagner — created the Peter B. Wagner Memorial Award for Women in Atmospheric Sciences in 1998. Dr. Wagner, a faculty member at DRI since 1968, was killed while conducting research in a 1980 plane crash that also claimed the lives of three other Institute employees.

In 1981, Dr. Wagner’s family and friends established a memorial scholarship to provide promising graduate students in DRI’s Atmospheric Sciences Program an award to further pursue their professional careers. Since 1998, this opportunity has extended specifically to women pursuing graduate education across the nation.

### 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Arsenic Contaminates Private Drinking Water Wells Across the Western Great Basin

Elevated levels of arsenic and other metals found in Nevada’s private wells

Elevated Levels of Arsenic and Other Metals Found in Nevada’s Private Wells

October 26, 2022
RENO, Nevada

Water Treatment
Arsenic
Private Wells

Above: Researchers test a private well water for traces as metals such as arsenic in Washoe Valley. Private wells are the primary source of drinking water, serving 182,000 people outside of Nevada’s bustling cities. 

Credit: Monica Arienzo/DRI.

Study shows that many household wells need better drinking water treatment and monitoring

 

Outside of Nevada’s bustling cities, private wells are the primary source of drinking water, serving 182,000 people. Yet some of the tested private wells in Nevada are contaminated with levels of heavy metals that exceed federal, state or health-based guidelines, a new study published in Science of The Total Environment shows. Consuming water contaminated by metals such as arsenic can cause adverse health effects.

Scientists from DRI and the University of Hawaii Cancer Center recruited households with private wells through the Healthy Nevada Project. Households were sent free water testing kits, and participants were notified of their water quality results and recommended actions they could take. More than 170 households participated in the research, with the majority from Northern Nevada around Reno, Carson City and Fallon.

“The goals of the Healthy Nevada project are to understand how genetics, environment, social factors and healthcare interact. We directly engaged our participants to better understand environmental contaminants that may cause adverse health outcomes,” said co-author Joseph Grzymski, Ph.D., research professor at DRI, principal investigator of the Healthy Nevada Project®, and chief scientific officer for Renown Health.

Nearly one-quarter (22%) of the private wells sampled had arsenic that exceeded safe levels determined by the Environmental Protection Agency (EPA) — with levels 80 times higher than the limit in some cases. Elevated levels of uranium, lead, cadmium, and iron were also found. 

 

two female scientists collect well water samples

Monica Arienzo, Ph.D., and Erika Robtoy, undergraduate student at the University of Nevada, Reno collect well water samples in Palomino Valley, Nevada.

Credit: Daniel Saftner/DRI.

“We know from previous research that Nevada’s arid climate and geologic landscape produce these heavy metals in our groundwater,” says Monica Arienzo, Ph.D., an associate research professor at DRI who led the study. “It was important for us to reach out to community members with private wells to see how this is impacting the safety of their drinking water.”

Fewer than half (41%) of the wells sampled used water treatment systems, and some treated water samples still contained arsenic levels over EPA guidelines. Although average levels of heavy metal contaminants were lower in treated water, many homes were unable to reduce contaminants to levels considered safe.

The state leaves private well owners responsible for monitoring their own water quality, and well water testing helps ensure water is safe to drink. This study shows that more frequent testing is needed to ensure Nevada’s rural communities have safe drinking water. This is particularly important as the effects of climate change and population growth alter the chemistry of groundwater, potentially increasing metal concentrations.

“The results emphasize the importance of regular water quality monitoring and treatment systems,” said co-author Daniel Saftner, M.S., assistant research scientist at DRI.

Although the research focused on wells in Nevada, other arid communities in Western states are facing similar risks of water contamination.

 

More information:

The full study, Naturally Occurring Metals in Unregulated Domestic Wells in Nevada, USA, is available from Science of The Total Environment: https://doi.org/10.1016/j.scitotenv.2022.158277.

This project was funded by an NIH award (#1R01ES030948-01). The Healthy Nevada Project was funded by grants from Renown Health and the Renown Health Foundation. Study authors included Monica M. Arienzo (DRI), Daniel Saftner (DRI), Steven N. Bacon (DRI), Erika Robtoy (DRI), Iva Neveux (DRI), Karen Schlauch (DRI), Michele Carbone (University of Hawaii Cancer Center) and Joseph Grzymski (DRI/Renown Health).

### 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Renown Health

Renown Health is Nevada’s largest, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe, and northeast California. With a diverse workforce of more than 6,500 employees, Renown has fostered a longstanding culture of excellence, determination, and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in a community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.

About the University of Hawaiʻi Cancer Center

The University of Hawaiʻi Cancer Center through its various activities, including scientific research and clinical trials, adds more than $57 million to the Oʻahu economy.  It is one of only 71 research institutions designated by the National Cancer Institute.  An organized research unit within the University of Hawaiʻi at Mānoa, the UH Cancer Center is dedicated to eliminating cancer through research, education, patient care and community outreach with an emphasis on the unique ethnic, cultural, and environmental characteristics of Hawaiʻi and the Pacific.  Learn more at https://www.uhcancercenter.org.  Like us on Facebook at https://www.facebook.com/UHCancerCenter.  Follow us on Twitter @UHCancerCenter.

Media Contacts:

Renown Public Relations
M: 775.691.7308
E: news@renown.org

Detra Page – DRI
M: 702.591.3786
E: Detra.Page@dri.edu

DRI Welcomes Emily McDonald-Williams as STEM Education Program Manager

DRI Welcomes Emily McDonald-Williams as STEM Education Program Manager

DRI Welcomes Emily McDonald-Williams as STEM Education Program Manager

October 11, 2022
RENO, Nevada

DRI is excited to welcome Emily McDonald-Williams as its STEM Education Program Manager. She brings experience as a 4-H Coordinator at Oregon State University, where she focused on developing and expanding STEM education opportunities on a state, national, and international basis. Prior to her work at Oregon State University, she worked with Montana State Parks and the Bureau of Land Management with a focus on integrating natural resource content with hands-on education throughout the community.

“Emily’s experience in STEM education and her desire to expand high-quality programs and offerings makes her a terrific addition to DRI’s STEM Education group,” said DRI Executive Director of the Division of Earth and Ecosystem Sciences Philippe Vidon, Ph.D. “We are delighted for Emily to lead DRI’s K-12 STEM Education program.”

Along with her dedication to expanding high-quality STEM education opportunities, McDonald-Williams will focus on designing curriculum that is inclusive, accessible, and provided equitably.

“I’m thrilled to lead DRI’s impactful K-12 STEM education program,” said McDonald-Williams. “My experience in STEM education, community outreach, and environmental conservation and restoration work has prepared me for this new role.”  

In addition to obtaining a Bachelor of Arts in environmental studies and biology from the University of California, Santa Cruz, McDonald-Williams also holds a Master of Science in education from Southern Oregon University, with a concentration in STEM curriculum and instruction.

 

headshot of emily mcdonald williams

Emily McDonald-Williams, STEM Education Program Manager at Desert Research Institute (DRI).

Credit: Jessi LeMay/DRI.

### 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

 

Nevada Gold Mines Supports DRI’s Nevada Robotics STEM Education Programs

Nevada Gold Mines Supports DRI’s Nevada Robotics STEM Education Programs

Nevada Gold Mines Supports DRI’s Nevada Robotics STEM Education Programs

September 27, 2022
RENO, Nev.

Nevada Robotics
Nevada Gold Mines
STEM Education

Supports educator training, robots and equipment, and outreach throughout the state

To address the economic need for a strong STEM (science, technology, engineering, and mathematics) workforce in Nevada, the goal is to bring robotics and engineering to every school across the state. With support from Nevada Gold Mines (NGM), Nevada’s educators are able to increase STEM education in the classroom with hands-on robotics training and support.

Thanks to NGM and other founding partners, more than 1,200 educators have been trained in educational robotics to date. This summer, 333 educators attended the Robotics Academy of Nevada (RAN) educator professional development training series held in Las Vegas, Reno, and the first inaugural event in Elko. Training increases educator confidence in robotics lessons and brings engineering, computer science, and coding to life in the classroom.

In addition to the new Elko RAN, Nevada’s rural communities are receiving greater access to STEM and robotics education, thanks to support from NGM. Through the Desert Research Institute Foundation, NGM provided funding to Nevada Robotics for a Rural STEM Coordinator to support the Elko and Spring Creek Boys and Girls Clubs, help local robotics educators, and host family STEM and Career Nights in rural Nevada. The goal is to increase equitable access to high-quality STEM education with training, support, and equipment.

“Robotics is an amazing way to spark a lifelong interest in STEM, teamwork, and creative problem solving for students of all ages,” said Christine Keener, chief operating officer, Barrick North America. “Nevada Gold Mines recognizes the need for additional STEM education in Nevada’s rural communities, and we are honored to provide the funding for a Rural STEM Coordinator.”

“Thanks to support from Nevada Gold Mines, we’re thrilled to be able to expand access to STEM education in Nevada’s rural communities by hiring a Rural STEM Coordinator,” said A.J. Long, M.A., head of the Nevada Robotics program at DRI.

The Nevada Robotics program, launched in 2018, introduces Nevada teachers to the engineering and robotics skills needed to build and program automated and remote-controlled robots with groups of students. Teaching students the fundamentals of engineering, computer science, and coding will help fill the STEM workforce pipeline gap in Nevada.

To support DRI’s Nevada Robotics program or for more information on how to make a gift to support DRI, please contact Kristin Burgarello, director of advancement, at 775.673.7386 or Kristin.Burgarello@dri.edu.

Scientists Unveil New System for Naming Majority of the World’s Microorganisms

Scientists Unveil New System for Naming Majority of the World’s Microorganisms

Scientists Unveil New System for Naming Majority of the World’s Microorganisms

September 20, 2022
LAS VEGAS, Nev.

Microorganisms
SeqCode
Prokaryotes

Above: Fluorescent-stained bacteria (pink) and archaea (green) from near-boiling water from Great Boiling Spring in Gerlach, Nevada. Photo credit: Jeremy Dodsworth. 

The SeqCode is a universal system, created through collaboration of hundreds of scientists, to formally register and name single-celled microorganisms known as prokaryotes.

Reposted from https://www.unlv.edu/news/release/scientists-unveil-new-system-naming-majority-worlds-microorganisms.

What’s in a name? For microorganisms, apparently a lot.

Prokaryotes are single-celled microorganisms – bacteria are an example – that are abundant the world over. They exist in the oceans, in soils, in extreme environments like hot springs, and even alongside and inside other organisms including humans.

In short, they’re everywhere, and scientists worldwide are working to both categorize and communicate about them. But here’s the rub: Most don’t have a name.

Less than 0.2% of known prokaryotes have been formally named because current regulations – described in the International Code of Nomenclature of Prokaryotes (ICNP) – require new species to be grown in a lab and freely distributed as pure and viable cultures in collections. Essentially, to name it you have to have multiple physical specimens to prove it.

In an article published Sept. 19 in the journal Nature Microbiology, a team of scientists present a new system, the SeqCode, and a corresponding registration portal that could help microbiologists effectively categorize and communicate about the massive number of identified yet uncultivated prokaryotes.

“Our goal is to unite field and laboratory studies in microbiology and respond to significant recent advancements in environmental genomics by providing a path to formally name the majority of identified yet unnamed prokaryotes,” said UNLV microbiologist Brian Hedlund, lead author on the paper and key collaborator on the development of the SeqCode. “The SeqCode should serve the community by promoting high genome quality standards, good naming practice, and a well-ordered database.”

Creating the SeqCode

Nearly 850 scientists representing multiple disciplines from more than 40 countries participated in a series of NSF-funded online workshops in 2021 to develop the new SeqCode, which uses genome sequence data for both cultivated and uncultivated prokaryotes as the basis for naming prokaryotes.

Since the 2000s, scientists who study prokaryotes in environments all over the world have used environmental genomics techniques to sample and study them, and hundreds of thousands of genome sequences are available in public databases. The community participating in the workshops, which were organized by Hedlund and colleague Anna-Louise Reysenbach from Portland State University, overwhelmingly supported the development of an alternative to the ICNP that would accept DNA sequence data and ultimately improve resources for researchers.

“The key pieces are in place for an orderly expansion of prokaryotic systematics to the entire prokaryotic tree of life,” said William B. Whitman, SeqCode corresponding author and University of Georgia microbiologist. “This expansion will serve the research and the broader community by providing a common language for all prokaryotes that is systematically organized and supported by data-rich genomic datasets and associated metadata.”

To qualify for inclusion in the SeqCode, genomeses must meet rigorous scientific standards to ensure quality, stability, and open data sharing. And, though it’s not yet universally accepted, the SeqCode fundamentally aligns with established international principles for naming other organisms, including plants and animals.

“Any organism with a high-quality genome sequence – from a pure culture or not – can be named under the SeqCode,” said Hedlund. “We will also automatically accept all names formed under the ICNP. I expect through time that the SeqCode will be used much more frequently than the ICNP.”

Creating Clarity Amongst Chaos

One of the primary goals for the new system, authors argue, is to reverse a trend in the field where “unregulated” names are used in literature out of necessity. This can lead to mistakes that increase the likelihood of subsequent renaming later on, making it difficult for scientists to review and compare data and communicate effectively. Conversely, authors argue that the SeqCode “embraces findability, accessibility, interoperability, and reusability principles.”

Hedlund referenced Chlamydia and related organisms as an example. Since these organisms can’t be grown, stored, or distributed as pure cultures, they’re currently unable to be officially named.

“It could be pretty confusing for clinicians to not have valid names for newly discovered chlamydiae,” says Hedlund. “There’s a risk of those names being poorly cataloged, which could stifle tracking of disease outbreaks and communication among scientists, doctors, and the public.”

Overcoming Controversy

Despite its intended goal to create clarity and synergy with accepted standards for naming, the move is not without controversy.

The SeqCode follows a previous attempt by scientists to modify the ICNP to allow uncultivated prokaryotes to be named based on having a DNA sequence that would serve as the evidence (or ‘type’) for the organism – as opposed to the ICNP rules now which require a culture into two permanent collections.

In 2020, a team led by Desert Research Institute biologist Alison Murray published a paper, also in Nature Microbiology, that was co-authored or endorsed by nearly 120 scientists representing 22 countries calling for action on the proposed modifications of the ICNP to accept DNA sequences as types or to go an alternate route. However, the proposed modifications were rejected by the International Committee on Systematics of Prokaryotes, the group responsible for governing the naming of prokaryotes.

“It is clear that the global community of scientists is ready for a paradigm change in how we name prokaryotes – to be inclusive of the breadth of prokaryotic life,” said Murray. “Modern genome technologies can resolve genomes of uncultivated organisms at the high degree of precision needed to ensure integrity and provide stability to the field of microbiology. Naming these taxa is the way to communicate their existence, their evolutionary history and predict their physiological capabilities.”

The 2020 setback led to a redoubling of efforts among the growing cadre of scientists and, ultimately, the “alternative route” which led to the formation of the SeqCode.

“Many people came to the table to share their perspectives, their energy, and their skills to make it happen,” said Hedlund. “The response to our workshops from scientists all over the world was incredible and helped validate why the time has come to formally make a change in how prokaryotes are named.”

Tension still exists among some scientists, who argue that less can be known about uncultivated prokaryotes than those that can be grown and manipulated in a lab as pure cultures. Additionally, nuances in processing and interpreting DNA sequence data could potentially lead to erroneous conclusions, a point that Hedlund claims is also true of studies of pure cultures.

The authors say this new system is not intended to discourage traditional cultivation of prokaryotes, but instead is designed by the scientific community to improve communication across the microbial sciences.

“We view this ‘SeqCode v.1.0’ as a necessary first step toward a unified system of nomenclature to communicate the full diversity of prokaryotes and we will cooperate with the community toward the realization of this vision,” authors write.

More information:

The paper, “SeqCode: a nomenclatural code for prokaryotes described from sequence data” was published Sept. 19 in the journal Nature Microbiology.  Learn more about the SeqCode at https://seqco.de/.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About UNLV

UNLV is a doctoral-degree-granting institution of more than 30,000 students and nearly 4,000 faculty and staff that has earned the nation’s highest recognition for both research and community engagement from the Carnegie Foundation for the Advancement of Teaching. UNLV offers a broad range of respected academic programs and is committed to recruiting and retaining top students and faculty, educating the region’s diverse population and workforce, driving economic activity, and creating an academic health center for Southern Nevada. Learn more at unlv.edu

New study examines impacts of three desert landscaping strategies on urban irrigation and air temperatures

New study examines impacts of three desert landscaping strategies on urban irrigation and air temperatures

Removing turf-grass saves water. But will it increase urban heat?

September 14, 2022
LAS VEGAS, Nev.

Landscape
Urban Irrigation
Air Temperature

New study examines impacts of three desert landscaping strategies on urban irrigation and air temperatures

As Las Vegas and other Southwestern cities look for ways to reduce water use during a historic drought, the removal of grass lawns and other areas of “nonfunctional turf” has been recommended by the Southern Nevada Water Authority and written into Nevada state law with AB356. But, will this change from turf-grass to other landscaping types result in other unintended climate impacts in urban areas, such as increased air or surface temperatures?

In a new study in the journal Hydrology, a team of scientists from DRI, Arizona State University (ASU), and the University of Nevada, Las Vegas (UNLV), examined the irrigation water requirements of three common types of urban landscapes. Then, they compared air temperature, surface temperature, and wind speed around the three sites to learn how differences in landscape types impact their surrounding environment.

The three landscape types analyzed in the study were a “mesic” tree and turf-grass landscape with water-intensive plants; a “xeric” landscape consisting primarily of desert plants on drip irrigation; and an intermediate “oasis” landscape type with a mix of high-and low water use plants. The sites were located around buildings in an experimental study area at ASU in Phoenix.

As expected, the mesic (tree and turf-grass) landscape showed the highest water consumption rate. However, the mesic site also had the lowest surface and air temperatures, both in the daytime and nighttime, thus creating better conditions for outdoor thermal comfort.

The site with xeric (desert) landscaping had the lowest irrigation water requirement but the highest temperatures. Air temperatures in the xeric landscape plot averaged 3oC (5.4oF) higher than in the other two landscape types.

The oasis landscape, with a mix of high- and low-water use plants, provided the best of both worlds – lower irrigation water requirements than the mesic site but more daytime cooling than the xeric landscape.

“The simple take-home message from what we learned was that xeric (desert) landscaping is not the best long-term solution and neither is mesic (tree-turf),” said the study’s lead author Rubab Saher, Ph.D., Maki postdoctoral research associate at DRI. “An ‘oasis’ style landscape, which contains trees like Acacia or ghost gum, and shrubs like dwarf poinciana, requiring light irrigation, are the best solution, because it conserves water but also contributes to cooling through the evapotranspiration of the plants.”

The study also examined the role of buildings and open sky to understand the effect of shade on the landscape. They found that shade in the narrow space between buildings created shade of comparable temperature to that under a tree in a mesic landscape and are interested in doing follow-up studies to learn more about the impact of building orientation on maximizing summer shade.

“I became interested in this topic because urban irrigation and water efficient landscaping are really important issues in the Western U.S., but haven’t been studied very thoroughly,” said Saher. “People have been applying methods for calculating irrigation from agricultural fields, but urban areas are very different landscapes, and the ways that homeowners irrigate are very unpredictable.”

The authors hope that their findings are helpful to homeowners, city planners, or anyone trying to help conserve water but prevent warming temperatures in arid urban regions.

“Removing turf grass from the landscape is an excellent approach for saving water, but if we remove all the turf grass, the temperature will go up,” Saher said. “For every acre of turf grass removed, we also need to plant native and/or rainfed trees to make arid cities livable in the long run.”

More information:

The full study, Assessing the Microclimate Effects and Irrigation Water Requirements of Mesic, Oasis, and Xeric Landscapes, is available from Hydrology: https://www.mdpi.com/2306-5338/9/6/104

This study was made possible with funding from the University of Nevada, Las Vegas (UNLV), and DRI’s Maki Postdoctoral fellowship. Study authors included Rubab Saher (DRI), Ariane Middel (ASU), Haroon Stephen (UNLV), and Sajjad Ahmad (UNLV).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About ASU

Arizona State University, ranked No. 1 “Most Innovative School” in the nation by U.S. News & World Report for seven years in succession, has forged the model for a New American University by operating on the principles that learning is a personal and lifelong journey for everyone, and that people thrive on experience and discovery that cannot be bound by traditional academic disciplines. Through innovation and a commitment to educational access, ASU has drawn pioneering researchers to its faculty even as it expands opportunities for qualified students.

About UNLV

UNLV is a doctoral-degree-granting institution of more than 30,000 students and nearly 4,000 faculty and staff that has earned the nation’s highest recognition for both research and community engagement from the Carnegie Foundation for the Advancement of Teaching. UNLV offers a broad range of respected academic programs and is committed to recruiting and retaining top students and faculty, educating the region’s diverse population and workforce, driving economic activity, and creating an academic health center for Southern Nevada. Learn more at unlv.edu

 

Media Contacts:

Detra Page
DRI
702.591.3786
Detra.page@dri.edu

David Rozul
ASU
480-965-3779
david.rozul@asu.edu

Cheryl Bella
UNLV
702-895-3965 (o)
702-499-3930 (c)
cheryl.bella@unlv.edu

Growing numbers of Native American households in Nevada face plumbing poverty, water quality problems

Growing numbers of Native American households in Nevada face plumbing poverty, water quality problems

Growing numbers of Native American households in Nevada face plumbing poverty, water quality problems

September 7, 2022
LAS VEGAS, Nev.

Native Americans
Plumbing Poverty
Water Quality

New study analyzes trends, opportunities, and challenges related to water security in Nevada’s Native American communities

A growing number of Native American households in Nevada have no access to indoor plumbing, a condition known as “plumbing poverty,” according to a new study by a team from DRI and the Guinn Center for Policy Priorities.

The study assesses trends and challenges associated with water security (reliable access to a sufficient quantity of safe, clean water) in Native American households and communities of Nevada and also found a concerning increase in the number of Safe Drinking Water Act violations during the last 15 years.

Native American communities in the Western U.S., including Nevada, are particularly vulnerable to water security challenges because of factors including population growth, climate change, drought, and water rights. In rural areas, aging or absent water infrastructure creates additional challenges.

In this study, the research team used U.S. Census microdata on household plumbing characteristics to learn about the access of Native American community members to “complete plumbing facilities,” including piped water (hot and cold), a flush toilet, and a bathtub or shower. They also used water quality reports from the Environmental Protection Agency to learn about drinking water sources and health violations.

According to their results, during the 30-year time period from 1990-2019, an average of 0.67 percent of Native American households in Nevada lacked complete indoor plumbing – higher than the national average of 0.4 percent. Their findings show a consistent increase in the lack of access to plumbing over the last few decades, with more than 20,000 people affected in 2019.

“Previous studies have found that Native American households are more likely to lack complete indoor plumbing than other households in the U.S., and our results show a similar trend here in Nevada,” said lead author Erick Bandala, Ph.D., assistant research professor of environmental science at DRI. “This can create quality of life problems, for example, during the COVID-19 pandemic, when lack of indoor plumbing could have prevented basic health measures like hand-washing.”

graph representation of Native Americans  in Nevada with no access to plumbing from 1990 to 2019

Native American community members in Nevada with no access to plumbing from 1990 to 2019.

Credit: Erick Bandala, DRI.

Plumbing poverty may correlate with other types of poverty. Analysis by the study team showed that as the number of people living in a household increased, access to complete plumbing decreased significantly, in agreement with other studies.

Study findings also showed a significant increase in the number of Safe Drinking Water Act violations in water facilities serving Native American Communities in Nevada from 2005 to 2020. The most common health-based violations included presence of volatile organic compounds (VOCs), presence of coliform bacteria, and presence of inorganic chemicals.

“Water accessibility, reliability, and quality are major challenges for Native American communities in Nevada and throughout the Southwest,” said coauthor Maureen McCarthy, Ph.D., research professor of environmental science and director of the Native Climate project at DRI.

graph displaying Types of Safe Drinking Water Act violations

Types of Safe Drinking Water Act violations documented by the EPA for public water systems serving Native American communities in Nevada, 2005-2020.

Credit: Erick Bandala, DRI.

The study authors hope that their findings are useful to decision-makers and members of the general public who may not be aware that plumbing poverty and water quality are significant problems in Nevada.

More information:

The full study, “Assessing the effect of extreme heat on workforce health in the southwestern USA,” is available from the International Journal of Environmental Science and Technology: https://www.sciencedirect.com/science/article/pii/S1462901122002179?dgcid=author

This project was funded by the General Frederick West Lander Endowment at DRI. Study authors included Erick Bandala (DRI), Maureen McCarthy (DRI), and Nancy Brune (DRI, formerly of the Guinn Center for Policy Priorities).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Save Red Rock Partners with DRI to “Make it Rain” in Red Rock Canyon

Save Red Rock Partners with DRI to “Make it Rain” in Red Rock Canyon

Save Red Rock Partners with DRI to “Make It Rain” in Red Rock Canyon

September 1, 2022
LAS VEGAS, Nev.

Above: The sun shines on Red Rock Canyon National Conservation Area. 

Photo courtesy of Pengcheng Zhu (iStock). 

Environmental nonprofit raises funds to enable cloud seeding technology in the region 

Save Red Rock is partnering with DRI to fund a cloud seeding program which will augment precipitation in the Spring Mountains, helping to replenish the aquifers within the Red Rock Canyon National Conservation Area. The partnership is working to alleviate some of the devastating effects of drought by stimulating additional snowfall in the winter and rainfall in the summer from naturally-occurring storm clouds in the area. The nonprofit is organizing a community crowdfunding campaign, aptly titled Make it Rain,” to raise $150,000 towards the multi-seasonal cloud seeding project.

“Drought conditions are at a critical level for much of the flora and fauna in the southwest,” says Save Red Rock President Heather Fisher. “The health and beauty of our outdoor sanctuaries like Red Rock Canyon are at risk. Along with our climate scientists, it’s up to all of us to act now and protect these endangered ecosystems for the long term.”

Cloud seeding is a safe and effective method used all over the world to enhance precipitation. It works by sending silver iodide, a natural and non-toxic compound, into a potential storm cloud which increases the likelihood of precipitation. Winter seeding techniques feature ground-based generators operated remotely by meteorologists who monitor conditions and carefully evaluate when to seed. Each generator has the potential of adding an average of 3,000 acre feet of snow melt per year. DRI’s last project in Lee Canyon proved even more successful, generating 5,656 acre feet, or approximately 1.8 billion gallons.

DRI has been pioneering cloud seeding programs since the early 1960s. They now offer time-tested methods that are proven to enhance snowfall in five mountain ranges, including the Lake Tahoe Basin (CA/NV), the Spring Mountains (NV), the Santa Rosa Mountains (NV), the San Juan Mountains (CO), and the Upper Colorado River Headwaters region (CO).

“Save Red Rock is the ideal partner for us on this project,” said DRI’s Program Director Frank McDonough. “Desert Research Institute is a proud pioneer of weather optimization research and practices, which have been used successfully for generations. However, as we focus on the science, it’s crucial that we work with other community organizations to fund, place and promote the use of our equipment.”

Community leaders have already started committing to the fundraising effort, including sponsor Brett Torino, Founder of The Brett Torino Foundation who will offer Torino Ranch in Lovell Canyon as the host site for the winter cloud seed generators; and Jeremy Burkhardt, Chairman of Origin Acoustics, who donated the first $25,000 to kickstart the crowdfund.

“Business has been good to me and it’s important to give back,” says Burkhardt. “I’m supporting Save Red Rock in this cloud seeding project because I believe in helping the environment and the beautiful canyon I love.” 

More information:

Additional donations to support DRI’s cloud seeding program for Save Red Rock can be made at https://saveredrock.com/make-it-rain/For those interested in learning more about how cloud seeding works, DRI and Save Red Rock will be hosting a public webinar on Thursday, Sept. 8 at 10 am. Pre-registration is encouraged and available here

###

About Save Red Rock

Save Red Rock is a 501c3 organization with a mission to preserve, protect, and enhance the natural, cultural, recreational, and scenic resources in and around the Red Rock Canyon National Conservation Area to ensure natural resource sustainability and promote responsible recreational enjoyment for all user groups now and for future generations.

About the Cottonwood Springs Water Stewards

The Cottonwood Springs Water Stewards is a committee of Save Red Rock whose goal is to preserve the springs and aquifers in Red Rock Canyon. Members of the Stewards include experts in botany, environmental science, land management and more.

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

The making of a megafire: Study explores why some wildfires grow fast and furious

The making of a megafire: Study explores why some wildfires grow fast and furious

The making of a megafire: Study explores why some wildfires grow fast and furious

August 22, 2022
RENO, Nev.

Megafires
Fire Ecology
Fire Detection

Above: A view of the Las Conchas Fire, which burned more than 150,000 acres in New Mexico in 2011. The fire was among those analyzed as part of this study.

Photo courtesy of the National Interagency Fire Center.

Reposted from https://www.fs.usda.gov/pnw/news-releases/making-megafire-study-explores-why-some-wildfires-grow-fast-and-furious

Some wildfires grow much larger and a lot faster than others to become megafires. But why? As their name suggests, megafires are wildfires of extreme size with great destructive potential, which can make them especially challenging to manage. As megafires become more frequent in the Western United States, better wildfire prediction is needed to protect lives, property, and resources.

A recent study led by the USDA Forest Service’s Pacific Northwest Research Station explores why some fires turn into megafires by analyzing the effects of daily weather conditions. The findings can help fire managers anticipate which fires are likely to grow most rapidly and become megafires.

“Ours is the first study to systematically and quantitatively compare daily weather conditions with daily fire growth using multiple fires across the country,” said Brian Potter, research meteorologist at the station’s Pacific Wildland Fire Sciences Laboratory in Seattle, Wash. Along with Daniel McEvoy, researcher with the Desert Research Institute, Potter analyzed 40 fires that burned in California, the Great Basin, the Rockies, the Northwest, and the Southwest between 2002 and 2017.

The two researchers looked at a particular kind of megafire, which they called “fires of unusual size” or FOUS. These fires were 90,000 acres or larger and grew an additional 22,000 acres or more after at least one blowup, or growth, event. The scientists then compared these unusually large wildfires with smaller wildfires from the same general area. For each fire, they looked at the effects of prevailing dryness and daily weather conditions.

The scientists were surprised to find that the daily weather during these types of fires was, if anything, less extreme than during the smaller fires in their study sample. The FOUS tended to develop after two to four weeks of drier weather, which appears to prime them to grow much more when strong, dry winds occur.

More information:

  • The largest wildfires developed because they responded to one- or two-day, high-wind events and preceding dryness more strongly than the other wildfires.
  • It was how the wildfires responded to weather, not the weather itself, that appeared to differentiate the largest fires from other fires.
  • The study’s findings suggest that when the previous couple of weeks have been dry, fire managers may need to be more aware than usual of infrequent high-wind days, even when overall conditions are mild.

Potter, Brian E.; McEvoy, Daniel. 2021. Weather factors associated with extremely large fires and fire growth days. Earth Interactions. 25(1): 160-176.

“Buen Aire Para Todos” project will create a new air quality monitoring system for Latinx community in East Las Vegas

“Buen Aire Para Todos” project will create a new air quality monitoring system for Latinx community in East Las Vegas

“Buen Aire Para Todos” project will create a new air quality monitoring system for Latinx community in East Las Vegas

July 14, 2022
LAS VEGAS, Nev.

Air Quality Monitoring
East Las Vegas
Buen Aire Para Todos

Above: Residential suburban neighborhood in Las Vegas, Nevada heading east from the Stratosphere.

Credit: cristianl, iStock.

Latinx communities in East Las Vegas will soon have access to an improved air quality monitoring program, thanks to a $300k grant from the Environmental Protection Agency (EPA) for a new project called Buen Aire Para Todos. This project will be led by ImpactNV with support from DRI, the City of Las Vegas, Make the Road Nevada, and the Las Vegas-Clark County Library District.

Residents of East Las Vegas (pop. 101,685) are disproportionally impacted by poor air quality and extreme heat, due to factors such as pollution from major highways, older homes without air conditioning, low access to personal vehicles, and low incomes (median household income $29,994). Buen Aire Para Todos will help to address some of the long-standing issues related to environmental justice and air quality in East Las Vegas, where approximately 65 percent of residents are Hispanic and many work in outdoor service jobs.

“ImpactNV is excited to lead this collaborative environmental justice grant for three important reasons,” said ImpactNV Director Lauren Boitel. “First, it showcases the strength of our organizations history of partnership and driving action for change in areas of need. Second, it provides a tangible example of how diverse sustainability is in its application, impact, and ability to improve the lives of all Nevadans. And finally, it elevates Nevada’s sustainability leadership nationally to be the recipient of such a competitive federal funding opportunity from the EPA.”

Buen Aire Para Todos will improve the air quality monitoring capabilities in East Las Vegas through the creation of a new air quality monitoring system made up of stationary and mobile outdoor sensors, as well as indoor sensors.

Ten stationary outdoor Purple Air sensors will be installed on public buildings, street lights, or other public areas. Ten mobile sensors will be placed on food carts and food trucks, in partnership with business-owners. And 20 indoor sensors will be placed in the residences of voluntary program participants, in association with a program to test the effectiveness of HVAC air filters.

These sensors will provide improved data on air quality for local residents, and allow the City of Las Vegas to access real time, high resolution data for one of the City’s most vulnerable neighborhoods.

“The project connects residents to science that directly impacts their lives,” said Associate Research Professor Derek Kauneckis, Ph.D., of DRI. “It develops a neighbor-level air quality monitoring grid where the community has control over the data.”

The project will also focus on expanding community awareness, education, and outreach to help residents better understand air quality measurements and health impacts of poor air quality and extreme heat. The project team will conduct community focus groups, organize educational outreach events, and share data with community members.

“Our membership of more than 10,000 consists primarily of immigrant, working families throughout East Las Vegas who have been shouldering the burden of confronting the negative impacts of a warming planet for years,” said State Director of Make the Road Nevada Leo Murieta. “It’s these directly impacted families who have been finding solutions to protect their loved ones day in and day out, so we are excited to work in partnership with our coalition to elevate these voices so we can create sustainable solutions for future generations of Nevadans.”

This project will begin in July 2022 and continue until June 2024.

Buen Aire Para Todos is a collaborative effort between nonprofit, academic, and public sector organizations in Southern Nevada who are united around the goal of developing solutions for cleaner air, better health, and reduced vulnerabilities to extreme heat. This project supports EPA’s Strategic Plan Goal of increasing transparency and public participation related to causes, effects, prevention, and control of air pollution.

“One of the priorities for the city of Las Vegas is to improve our residents’ quality of life,” said Las Vegas City Councilwoman Olivia Diaz. “Air pollution disproportionately affects low-income communities, like many of the Ward 3 families that live in my district. Ensuring better air quality is certainly a health issue that will benefit residents, especially children whose lungs are most vulnerable and are more likely to be hospitalized with respiratory issues. The city of Las Vegas is a leader in sustainable programming and I want to thank the EPA, ImpactNV and all the partners in the Buen Aire Para Todos project for their help in improving the quality of life for our residents.”

###

About ImpactNV

ImpactNV is Nevada’s social, economic and environmental sustainability alliance. Founded in 2008, ImpactNV has served as an independent nonprofit comprised of some of Nevada’s largest public and private entities and NGOs, including MGM Resorts International, Caesars Entertainment, Clark County, the City of Las Vegas, City of Reno and Dignity Health/Intermountain Healthcare.  The goal of this alliance is to make Nevada and its communities more environmentally, economically and socially resilient and sustainable.

About Make the Road Nevada

Make The Road Nevada is a non-profit organization based in Las Vegas, Nevada. Our family of organizations hail from the east coast, where they have changed the face of community organizing in immigrant communities and become an immutable force for good. The states of New York, New Jersey, Connecticut, Pennsylvania all bear the fruits of our work, and it is time for Make The Road to make the difference in our communities in the west coast. Our vision for Nevada begins with building a strong grassroots foundation in Las Vegas and it ends with elevating the power of working class immigrant communities in every community around the state. We do this by informing, empowering, and mobilizing our community to take action on important issues that directly affect their families and loved ones.

About Las Vegas-Clark County Library District

The award-winning Las Vegas-Clark County Library District is an independent taxing entity that serves a diverse community across 8,000 square miles. Through its 25 branches and website, the Library District offers a collection of 3.2 million items consisting of books, movies, music (including streaming and downloadable), online resources, as well as free programs for all ages. The Library District is a vibrant and vital member of the community offering limitless learning; business and career advancement; government and social services support; and best of all, a place where customers find a sense of culture and community. For more information, and to support Library District programs, please visit LVCCLD.org

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Media contacts:

Lauren Boitel
Executive Director, ImpactNV
Director@impact-nv.org
702-460-7047

Janette Mata
Communications Director, Make the Road Nevada
janette.mata@maketheroadnv.org
818-282-5223

Detra Page
Communications Manager, DRI
Detra.Page@dri.edu
702-862-5597

Margaret Kurtz
Public Information Office, City of Las Vegas
mkurtz@lasvegasnevada.gov
702-229-6993

DRI Appoints Vic Etyemezian, Ph.D., Vice President for Research

DRI Appoints Vic Etyemezian, Ph.D., Vice President for Research

DRI Appoints Vic Etyemezian, Ph.D., Vice President for Research

July 6, 2022
LAS VEGAS

Above: The DRI sign at the Las Vegas campus.

Credit: David Becker/Nevada Momentum.

DRI is proud to announce the appointment of Vic Etyemezian, Ph.D., as the institution’s vice president for research, effective July 1, 2022. Etyemezian has served in an interim capacity since September of 2019.

“During Vic’s time as interim vice president for research, he has shown the commitment and vision to lead DRI’s current and future research opportunities,” said DRI President Kumud Acharya, Ph.D.  “I am confident in Vic’s abilities, and I look forward to his continued contributions to the advancement of DRI’s research portfolio.”

“I am honored to accept DRI’s Vice President for Research role as a permanent position and to promote the important research our scientists are doing right here in Nevada and around the world,” said Etyemezian. “I look forward to continuing to work closely with our dedicated division directors, research faculty, graduate students, and staff to expand our research and share DRI’s impactful science that inspires solutions.”

Before being named Interim Vice President for Research, Etyemezian was a senior faculty member in DRI’s Division of Atmospheric Sciences. He spent more than two decades working in dust emissions, air dispersion modeling, and data analysis. He has numerous peer-reviewed publications, a record of successfully pursuing intellectual property based on DRI research and is well known and regarded within the dust research community. He holds a Ph.D. from Carnegie Mellon University, Master’s from Johns Hopkins University, and a Bachelor of Science from the California Institute of Technology.

 

Headshot of Vic Etyemezia

Vic Etyemezia, Ph.D., Vice President for Research at Desert Research Institute (DRI).

Credit: Jessi LeMay/DRI.

### 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

 

Study Explores Uncertainties in Flood Risk Estimates

Study Explores Uncertainties in Flood Risk Estimates

Study Explores Uncertainties in Flood Risk Estimates

June 14, 2022
RENO, Nev. 

Hydrology
Climate
Flood Risk

Above: The Truckee River in Reno, Nev. during high flow conditions after a storm in late January, 2016. 

Credit: Kelsey Fitzgerald/DRI.

Results show a need to revise existing methods for estimating flood risk

Flood frequency analysis is a technique used to estimate flood risk, providing statistics such as the “100-year flood” or “500-year flood” that are critical to infrastructure design, dam safety analysis, and flood mapping in flood-prone areas. But the method used to calculate these flood frequencies is due for an update, according to a new study by scientists from DRI, University of Wisconsin-Madison, and Colorado State University 

Floods, even in a single watershed, are known to be caused by a variety of sources, including  rainfall, snowmelt, or “rain-on-snow” events in which rain falls on existing snowpack. However, flood frequencies have traditionally been estimated under the assumption these flood “drivers,” or root causes, are unimportant. 

In a new open-access paper in Geophysical Research Letters, a team led by Guo Yu, Ph.D., of DRI examined the most common drivers (rainfall, snowmelt, and rain-on-snow events) of historic floods for 308 watersheds in the Western U.S., and investigated the impact of different flood types on the resulting flood frequencies. 

Their findings showed that most (64 percent) watersheds frequently experienced two or three flood types throughout the study period, and that rainfall-driven floods, including rain-on-snow, tended to be substantially larger than snowmelt floods across watershed sizes.   

Further analysis showed that by neglecting the unique roles of each flood type, conventional methods for generating flood frequency estimates tended to result in under-estimation of flood frequency at more than half of sites, especially at the 100-year flood and beyond. 

“In practice, the role of different mechanisms has often been ignored in deriving the flood frequencies,” said Yu, a Maki postdoctoral research associate at DRI. “This is partly due to the lack of physics-based understanding of historic floods. In this study, we showed that neglecting such information can result in uncertainties in estimated flood frequencies which are critical for infrastructure.” 

The study findings have important implications for estimating flood frequencies into the future, as climate change pushes conditions in snowmelt-dominated watersheds toward increased rainfall. 

“How the 100-year flood will evolve in the future due to climate change is one of the most important unanswered questions in water resources management,” said Wright, an associate professor in Civil and Environmental Engineering at University of Wisconsin-Madison. “To answer it, we need to focus on the fundamental science of how the water cycle, including extreme rainstorms and snow dynamics, are and will continue to change in a warming climate.” 

The study team hopes that this research is useful to engineers, who rely on accurate estimates of flood frequencies when building bridges and other infrastructure. Although many engineers realize that there is a problem with the conventional way of estimating flood frequencies, this study provides new insights into the level of inaccuracy that results.  

“This study shows that taking into account different physical processes can improve flood risk assessment,” said Frances Davenport, Ph.D., postdoctoral research fellow at Colorado State University. “Importantly, this result suggests both a need and opportunity to develop new methods of flood frequency assessment that will more accurately reflect flood risk in a warming climate.” 

More information: 

The full study, Diverse Physical Processes Drive Upper-Tail Flood Quantiles in the US Mountain West, is available from Geophysical Research Letters: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL098855  

This project was funded by the DRI’s Maki Postdoctoral fellowship, U.S. National Science Foundation Hydrologic Sciences Program (award number EAR-1749638), and Stanford University. Study authors included Guo Yu (DRI/University of Wisconsin-Madison), Daniel Wright (University of Wisconsin-Madison), and Frances Davenport (Stanford University and Colorado State University).  

### 

About DRI 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu. 

About Colorado State University’s Walter Scott, Jr. College of Engineering 

Colorado State is one of the nation’s top public research universities with about 33,000 students and $447 million in annual research funding. The Walter Scott, Jr. College of Engineering at CSU prepares students to solve global challenges to shape a better world through research, education, innovation, and outreach. In addition to a top-ranked graduate program in atmospheric science, the college conducts cutting-edge, interdisciplinary research that provides students hands-on learning in biological, biomedical, chemical, civil, computer, electrical, environmental, mechanical, and systems engineering. The college attracts about $80 million in annual research dollars, placing it in the top tier of public institutions of similar size, and is a campus leader in patents, startups, and technology transfer. For more information, please visit www.engr.colostate.edu. 

Raiders Foundation Supports Students with NFL Foundation Digital Divide Grant

Raiders Foundation Supports Students with NFL Foundation Digital Divide Grant

Raiders Foundation Supports Students with NFL Foundation Digital Divide Grant

May 25, 2022
LAS VEGAS

Digital Divide
Technology
Technology Careers

Above: High school students listen as a panel of technology leaders talk about their careers at Tech Tomorrow. 

Credit: PHOTO COURTESY OF THE LAS VEGAS RAIDERS.

Thirty junior and senior high school students surprised with new laptops

The Raiders Foundation has teamed up with DRI and Jobs 4 Nevada’s Graduates (J4NG) on “Tech Tomorrow” to help bridge the digital divide in Southern Nevada. Thirty junior and senior high school students selected by J4NG were treated to a special event at the Credit One Club in Allegiant Stadium, home of the Las Vegas Raiders. The students received an exclusive behind-the-scenes tour of Allegiant Stadium, showcasing how technology plays a role in nearly all aspects of a NFL game, and heard from an inspiring panel of technology leaders about careers in technology. At the end of the event, all 30 students were surprised with a brand-new laptop, wireless mouse, and backpack, all in an effort to bridge the digital divide.  

“The Raiders Foundation is excited to play a role in helping to bridge the digital divide in our community,” said Raiders Foundation Executive Director Alan Diskin. “This endeavor matches our mission tenet of youth development and reinforces our commitment to making the Silver State a better place for today’s youth, who will become tomorrow’s leaders.” 

“The ability to access computers and the internet plays a significant role in solving our world’s greatest challenges, and technology has become increasingly important for science exploration and research,” said DRI President Kumud Acharya. “We are very appreciative to the Raiders Foundation for selecting DRI as a partner to administer the NFL Foundation Digital Divide grant and produce ‘Tech Tomorrow.’”  

“Exposure to technology and jobs in Nevada allows our students to explore career opportunities they might not have otherwise known about,” said J4NG Executive Director Dr. Rene Cantu. “We want to thank the Raiders Foundation for funding this opportunity and partnering with DRI to administer the program. The technology career panel inspired our students about a future in a tech-based job. We are grateful to the Raiders Foundation for the NFL Digital Divide Grant, which provided our students with new laptops to help them further their career and college goals after graduation.”

The “Tech Tomorrow” event provided a foundation for these students to continue to learn and build technology into their future.  

tech tomorrow group picture

Thirty junior and senior high school students pose with leaders from the Las Vegas Raiders Foundation, DRI, and J4NG. After the photo, the students were surprised with a brand-new laptop, wireless mouse, and backpack. 

Credit: PHOTOS COURTESY OF THE LAS VEGAS RAIDERS.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Jobs for Nevada’s Graduates 

Jobs for Nevada’s Graduates (J4NG), is a statewide nonprofit, part of the national organization, Jobs for America’s Graduates (JAG). J4NG empowers positive futures for Nevada’s youth by working with students to achieve graduation and find career pathways. J4NG helps Nevada students reach their potential using in-depth mentoring, instruction, data-driven strategies and long-term support. 60 schools across Nevada offer J4G programs through J4NG, serving more than 3,300 students. J4NG students receive over 120+ hours of career readiness instruction, guidance and support through graduation and the first 12 months after graduation. 

HELP of Southern Nevada and DRI Recognize the 2022 STEM Force Graduates

HELP of Southern Nevada and DRI Recognize the 2022 STEM Force Graduates

HELP of Southern Nevada and DRI Recognize the 2022 STEM Force Graduates

May 25, 2022
LAS VEGAS

STEM Careers
Career Development
Workforce Innvoation

Above: DRI President Kumud Acharya speaks to the graduates of the 2022 STEM Force program. 

Credit: Tommy Gugino/DRI.

HELP of Southern Nevada and DRI honored the graduates of its 2022 Workforce Innovation and Opportunity Act (WIOA) STEM Force Program. Families and pupils gathered inside DRI’s Roger’s Auditorium to commemorate the student’s achievements in environmental research as they go on to pursue a potential STEM career. The ceremony kicked off with opening remarks from DRI President Kumud Acharya followed by a video montage of events throughout the program, and a reception filled with beverages and cake for all. Those in attendance included STEM Education Coordinator at DRI, Shawna Witt, STEM Force Program Director, Craig Rosen, HELP of Southern Nevada Chief Workforce Officer, Denise Gee, and Workforce Services Program Manager, Christina Sewell.    

“With a growing need for a workforce skilled in science, technology, engineering, and math (STEM), DRI is committed to helping students achieve long term outcomes both inside and outside of the classroom. Through the STEM Force Program, students are taught fundamentals and are exposed to scientific solutions so that they can pursue future STEM careers,” said Rosen. “We are delighted to once again partner with HELP of Southern Nevada to support their mission and ensure students are equipped with the background knowledge and tools to succeed in their future career.” 

The 10-week STEM Force Program provided WIOA program members with the opportunity to learn about STEM topics and careers through a series of presentations, field trips and hands-on projects. Students of the program were able to interact with highly skilled scientists, engage in experiments and work collaboratively with one another to develop work-readiness skills such as creativity, problem-solving, teamwork and determination.  

“We want to thank DRI for their incredible partnership and urgency to continue helping our clients help themselves,” said Sewell. “As we set our clients up for success, we believe it is important to build a foundation for their future through various workshops, support groups and networking.” 

STEM Force Graduates 2022

The 2022 STEM Force Graduates with DRI STEM Education Coordinator Shawna Witt and DRI Community Engagement and Professional Development Administrator Craig Rosen.

Credit: Tommy Gugino/DRI.

More Information:

For more information on HELP of Southern Nevada’s programs, please visit https://www.helpsonv.org. 

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About HELP of Southern Nevada 

HELP of Southern Nevada provides assistance to low-income families, homeless youth and other individuals, to help them reach self-sufficiency through direct services, trainings and referrals. HELP operates 10 departments, consists of 200 employees and serves tens of thousands of unduplicated clients each year. Programs available include Behavioral Health Services, Coordinated Entry Community Matchers, Homeless Response Teams, Family Housing Services, Framing Hope Warehouse, Holiday Assistance, Adult Housing Programs, Community Relations, Shannon West Homeless Youth Center, Weatherization and Workforce Services. For more information, call HELP of Southern Nevada at 702.369.4357 or visit www.helpsonv.org. Follow HELP of Southern Nevada on Facebook, Twitter and Instagram

Nevada Receives National Science Foundation Research Award for $20 Million

Nevada Receives National Science Foundation Research Award for $20 Million

drone in wildfire

May 17, 2022
LAS VEGAS

Fire Science
Wildland Fire Research
Workforce Development 

Nevada Receives National Science Foundation Research Award for $20 Million

To increase capacity for wildland fire research, education, and workforce development

The Nevada System of Higher Education (NSHE) has been awarded $20 million over a period of five years for the Harnessing the Data Revolution for Fire Science (HDRFS) project. This project is funded through the National Science Foundation Established Program to Stimulate Competitive Research (NSF EPSCoR); whose mission is to enhance research competitiveness of targeted jurisdictions (states, territories, commonwealth) by strengthening STEM capacity and capability. 

The overarching goal of the RII Track-1: Harnessing the Data Revolution for Fire Science (HDRFS) project is to increase the capacity of Nevada for wildland fire research, education, and workforce development and to demonstrate this increased capacity through technology-enhanced fire science in the regionally important sagebrush ecosystem. 

This system-wide partnership involves the three research institutions, the Desert Research Institute (DRI), the University of Nevada, Las Vegas (UNLV), and the University of Nevada, Reno (UNR). Further involvement includes faculty and students from NSHE undergraduate institutions.  

“NSF continues to serve as an essential partner in supporting the critical work of the NSHE EPSCoR,” said NSHE Board of Regents Chair Cathy McAdoo. “As our region currently faces extreme fire and water challenges, we appreciate this investment in Fire Science research and workforce development; giving NSHE institutions (DRI, UNLV, UNR) more capacity to solve our most pressing environmental issues.”  

This project will inform and improve land and fire management by providing scaling of fire effects and impacts from smaller to larger fires in four fire science areas: Ecology; Hydrology between fire events; Fire Processes; and Fire Emissions and their Atmospheric Aging during fire events. This will be achieved through strategic investments in expertise, facilities, Cyberinfrastructure Innovations, and Education and Workforce Development creating end-to-end pipelines for research and STEM advancements. 

“This project will generate and harness large amounts of data from diverse sensor platforms to accurately model landscapes and wildland fires from plot to watershed scales,” said Frederick Harris, Nevada NSF EPSCoR Project Director. “We will study how fires impact the societal needs outlined in the Nevada Science and Technology Plan.” 

In addition, NSHE researchers will study potential new areas of economic development for Nevada, emphasizing new opportunities for workforce development, diversity, hiring new faculty, and providing more scholarship opportunities for undergraduate and graduate students in STEM fields.  

“This NSF award funds critical fire science research, which continues to be a priority for Nevada,” said DRI President Kumud Acharya. “DRI has expertise in wildland fire research, and we look forward to working with our fellow NSHE institutions on this important project.” 

The award will enhance Nevada’s capabilities in wildland fire science, UAS, data acquisition, processing, and modeling, and rapid deployment, while strengthening Nevada’s network of external collaborators and stakeholders, who already include the major fire and land management agencies in the Great Basin and Western United States. 

“This marks an important investment for Nevada and the West,” said UNR President Brian Sandoval. “This National Science Foundation EPSCoR-supported project takes a comprehensive, collaborative approach. It will enhance the capacity of Nevada’s public research institutions to further tackle an issue of utmost importance and will do so by further deploying technology and cyberinfrastructure, and further building on the expertise and capabilities of our researchers and faculty.” 

“By joining forces, UNR, DRI, and UNLV are poised to reveal the power of cooperation in Nevada when it comes to addressing challenges important to the state and beyond its borders,” said UNLV President Keith Whitfield. “This research will advance our fundamental understanding of wildfires as it strengthens the capacity of our campuses to engage with each other and with Nevada’s students and citizens in addressing today’s complex challenges. This is but one example of how research works for Nevada.” 

 ###

About NSHE

The Nevada System of Higher Education, comprised of two doctoral-granting research universities, a state college, four comprehensive community colleges, and one environmental research institute, serves the educational and job training needs of Nevada. NSHE provides educational opportunities to more than 100,000 students and is governed by the Nevada Board of Regents. The System includes the University of Nevada, Las Vegas, the University of Nevada, Reno, Nevada State College, Desert Research Institute, the College of Southern Nevada, Great Basin College, Truckee Meadows Community College, and Western Nevada College. For more information regarding NSHE please visit: https://nshe.nevada.edu/ 

About the Nevada System Sponsored Programs and EPSCoR

The mission of the Nevada System Sponsored Programs and EPSCoR is to promote collaboration and multidisciplinary learning among NSHE institutions, and to enable alignment of efforts with the needs of the state to increase research and STEM competitiveness. The goal is to create new opportunities in the State of Nevada for workforce development and promote the development of Science, Technology, Engineering and Mathematics (STEM) disciplines for the state. For more information regarding Nevada EPSCoR please visit: https://epscorspo.nevada.edu/ 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Farm vehicles heavy as dinosaurs jeopardize future food security

Farm vehicles heavy as dinosaurs jeopardize future food security

Heavy farm machinery

May 17, 2022

Farm vehicles are heavy as dinosaurs, jeopardize future food security

Reposted from https://www.slu.se/en/ew-news/2022/5/farm-vehicles-heavy-as-dinosaurs-jeopardize-food-security/.

Farm vehicles are becoming so heavy that they jeopardize future food security in Europe, America and Australia. Larger and more flexible tires have limited the damage on the surface, but below the topsoil, the soil is becoming so compact that its long-term production capacity is threatened. These conclusions are made in a new global study, which also draws parallels to the sauropods, the heaviest animals that ever walked Earth.

The study, which was published in the Proceedings of the National Academy of Sciences (PNAS) yesterday, was conducted by Professor Thomas Keller from the Swedish University of Agricultural Sciences (SLU) and Agroscope in Switzerland, and Professor Dani Or from ETH Zurich in Switzerland and the Desert Research Institute in the USA.

Mechanization has greatly contributed to the success of modern agriculture, with vastly expanded food production capabilities achieved by the higher capacity of farm machinery. However, the increase in capacity has been accompanied by heavier vehicles that increase the risk of subsoil compaction.

While the total weight of laden combine harvesters could be around 4 tonnes in the late 1950s, we can today see modern vehicles weighing 36 tonnes in the fields, and the researchers behind the present study decided to investigate what this development has meant for arable land. The contact stress on the soil surface turned out to have remained constant at a low level during this period, which is due to the fact that the machines have been fitted with ever larger tires that distribute the weight over a larger surface. In the deeper soil layer, the subsoil, on the other hand, soil compaction has increased to levels that jeopardize the soil’s ability to produce food. This also has consequences for the soil’s ability to transport water and provide other important ecosystem services.

“Subsoil compaction by farm vehicles is a very serious problem, since once soils are compacted, they remain damaged for decades. This may be one of the reasons why harvests are no longer increasing and why we are now seeing more floods than before”, says lead author Professor Thomas Keller, from SLU in Sweden and Agriscope in Switzerland.

High risk of compaction in one fifth of the arable land globally

The researchers have also produced a map that shows how the risk of chronic subsoil compaction varies around the world and the risk turned out to be greatest in Europe, North and South America and Australia. Globally, about a fifth of all arable land is estimated to be at risk of far-reaching damage that is very difficult to repair. In other words, the chance that these soils will recover is small.

The risk is presently smaller in Asia and Africa, where the mechanization of agriculture has not reached the same high level yet.

“If the mechanization were to gain momentum in Asia and Africa, however, there is a risk of subsoil compaction also on these continents”, says Thomas Keller.

Vehicle manufacturers must pay more attention to subsoil compaction

To contribute to more sustainable agriculture, vehicle manufacturers need to be more concerned about the risk of subsoil compaction and its negative impact on the soil.

“Above all, the wheel loads of modern farm vehicles need to be reduced in order not to affect the subsoil to the same extent as today. The heavier the machines, the worse for the subsoils”, says Thomas Keller.

Did dinosaurs induce soil compaction?

The researchers also show that the heaviest farm vehicles used in modern agriculture approach the weight of the heaviest dinosaurs, the sauropods. This indicates that the sauropods probably induced soil compaction and affected the soil’s production capacity in the same way as modern farm vehicles.

“No one seemed to have wondered whether dinosaurs induced subsoil compaction, but since the sauropods were as heavy as modern farm vehicles, we thought this was a question that ought to be explored”, says Thomas Keller.

Like humans, sauropods depended on the soils ability to provide food, suggesting that they moved across the landscape in a way that reduced the risk of soil compaction. One possibility is that they restricted their movements to fixed “foraging trails” and grazed plants next to them with the help of their long necks. In this way, they could ensure that the surrounding land continued to produce the plant food they needed.

More information:

The full study, “Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning,” is available from the Proceedings of the National Academy of Sciences: https://doi.org/10.1073/pnas.2117699119

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

For Outdoor Workers, Extreme Heat Poses Extreme Danger

For Outdoor Workers, Extreme Heat Poses Extreme Danger

extreme heat and workforce health
May 11, 2022
LAS VEGAS
Extreme Heat
Outdoor Workers
Workforce Health

For Outdoor Workers, Extreme Heat Poses Extreme Danger

Study explores effects of summertime heat waves on workforce health in Las Vegas, Phoenix, and Los Angeles
Working outdoors during periods of extreme heat can cause discomfort, heat stress, or heat illnesses – all growing concerns for people who live and work in Southwestern cities like Las Vegas, where summer temperatures creep higher each year. But, did you know that female outdoor workers are experiencing disproportionate impacts? Or, that more experienced outdoor workers are at higher risk than those with fewer years on the job? 

In a new study in the International Journal of Environmental Science and Technology, scientists from DRI, Nevada State College, and the Guinn Center for Policy Priorities explore the growing threat that extreme heat poses to workforce health in three of the hottest cities in North America – Las Vegas, Los Angeles, and Phoenix. Their study results hold important findings for outdoor workers, their employers, and policymakers across the Southwestern U.S.   

To assess the relationship between extreme heat and nonfatal workplace heat-related illness, the study compared data on occupational injuries and illnesses for the years 2011-2018 with heat index data from Las Vegas, Los Angeles, and Phoenix. Heat index data combines temperature and humidity as a measure of how people feel the heat. 

“We expected to see a correlation between high temperatures and people getting sick – and we found that there was a very clear trend in most cases,” said lead author Erick Bandala, Ph.D., assistant research professor of environmental science at DRI. “Surprisingly, this type of analysis hadn’t been done in the past, and there are some really interesting social implications to what we learned.” 

First, the research team analyzed changes in heat index data for the three cities. They found a significant increase in heat index at two of the three locations (Phoenix and Las Vegas) during the study period, with average heat index values for June-Aug climbing from “extreme caution” in 2012 into the “danger” range by 2018. Over the same period, data from the Bureau of Labor and Statistics showed that the number of nonfatal heat-related workplace injuries and illnesses in each of the three states increased steadily, climbing from below the national average in 2011 to above the national average in 2018.  

heat-related nonfatal workplace injuries

According to new research, the number of heat-related nonfatal workplace injuries in Arizona, California, and Nevada increased between 2011 and 2018. The three states now exceed the U.S. average.

Credit: Erick Bandala/DRI.

“Our data indicate that the increases in heat are happening alongside increases in the number of nonfatal occupational injuries across these three states,” Bandala said. “Every year we are seeing increased heat waves and higher temperatures, and all of the people who work outside in the streets or in gardens or agriculture are exposed to this.”

Next, the study team looked deeper into the data to learn about the number of male and female workers being affected by heat-related workplace injuries. At the beginning of the study in 2011, 26 to 50 percent of the people affected across the three states were female. By 2018, 42 to 86 percent of the people affected were female.

Study authors believe that the reason for this increase may be due to more women entering the outdoor workforce, or it could be related to the vulnerability of women to certain heat-related effects, like hyponatremia — a condition that develops when too much plain water is consumed under high heat conditions and sodium levels in blood get too low.

“As the number of female workers exposed to extreme temperatures increases, there is an increasing need to consider the effect of gender and use different approaches to recommend prevention measures as hormonal factors and cycles that can be exacerbated during exposure to extreme heat,” said study coauthor Kebret Kebede, M.D., associate professor of biology at Nevada State College.

The authors examined other variables, such as the length of an employee’s service with an employer. They found that the number of heat-related injury/illnesses tended to increase as the length of service with the employer increased, and that those with more than five years of service were at greater risk than those with less than one year of service. This may be due to employees with more years of service having a reduced perception of risk, or could be a cumulative effect of years of chronic heat exposure on the well-being of outdoor workers.

heat-related injuries/illnesses

New research shows that in Arizona, Nevada and California, the number of heat-related injuries/illnesses tended to increase as length of service with the employer increased.

Credit: Erick Bandala/DRI.

In severe cases, heat-related illness or injury can cause extensive damage to all tissues and organs, disrupting the central nervous system, blood-clotting mechanisms, and liver and kidney functions. In these cases, lengthy recoveries are required. The authors found concerning evidence that heat-related injuries are keeping many outdoor workers away from work for more than 30 days.

“These lengthy recovery times are a significant problem for workers and their families, many of whom are living day-to-day,” Bandala said. “When we have these extreme heat conditions coming every year and a lot of people working outside, we need to know what are the consequences of these problems, and we need the people to know about the risk so that they take proper precautions.”

heat-related injuries

Authors of a new study on the impacts of extreme heat on workplace health found concerning evidence that heat-related injuries are keeping many outdoor workers away from work for more than 30 days.

Credit: Erick Bandala/DRI.

The study also explored connections between heat-related injuries/illnesses and the number of hours worked, the time of day that the event occurred, and the ethnicities and age groups that were most impacted.

Study authors hope that their results will be useful to policymakers to protect outdoor workers. They also hope that the information will be useful to outdoor workers who need to stay safe during times of extreme heat, and employers who rely on a healthy workforce to keep their businesses operating.

“This study underscores the importance of and the need for the work the Nevada Occupational Safety and Health Administration (OSHA) is doing to adopt a regulation to address heat illness,” stated Nancy Brune, Ph.D., study co-author and senior fellow at the Guinn Center.

“As temperatures continue to rise and heat-related illnesses and deaths continue to rise, the need for public policies to alleviate health and economic impacts is growing,” Bandala said.  “I hope to continue doing research on this problem so that we can have a better of understanding of the impacts of extreme heat and how to help the people who are most vulnerable.”

More information:

The full study, “Assessing the effect of extreme heat on workforce health in the southwestern USA,” is available from the International Journal of Environmental Science and Technology: https://link.springer.com/article/10.1007/s13762-022-04180-1

This project was funded by NOAA/IRAP (Grant no. NA18AR4310341) and the National Institute of General Medical Sciences (GM103440) from the National Institutes of Health. Study authors included Erick Bandala (DRI), Nancy Brune (Guinn Center for Policy Priorities), and Kebret Kebede (Nevada State College).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Nevada State College

Nevada State College, a four-year public institution, is a member of the Nevada System of Higher Education. Nevada State places a special emphasis on the advancement of a diverse and largely under-served student population. Located on a developing 512-acre campus in the foothills of Henderson, Nevada, the college was established in 2002 as a new tier in the state system between the research universities and the two-year colleges and, as such, is Nevada’s only state college. Nevada State College is one of the fastest-growing colleges in the country and the fastest growing in Nevada. It currently has more than 7,000 students and more than 800 full- and part-time employees. For more information, visit http://nsc.edu

About the Guinn Center

The Guinn Center is a policy research center, affiliated with the University of Nevada, Reno, with offices in both Las Vegas and Reno. The Guinn Center provides data-driven research and policy analysis. The Guinn Center seeks to identify and advance common-sense policy solutions through research , policy engagement, and strategic partnerships.

Study Develops Framework for Forecasting Contribution of Snowpack to Flood Risk During Winter Storms

Study Develops Framework for Forecasting Contribution of Snowpack to Flood Risk During Winter Storms

flooding along the South Fork of the Yuba River in California

May 3, 2022
RENO, NEV.

Forecasting
Flood Risk
Winter Storms

Above: During January 2017, a rain-on-snow event caused flooding along the South Fork of the Yuba River in California. Climate change is expected to make such events larger and more frequent.

Credit: JD Richey. 

Study Develops Framework for Forecasting Contribution of Snowpack to Flood Risk During Winter Storms

New research advances effort to create a decision-support tool for reservoir operators and flood managers

Anne Heggli in the snow

Lead author Anne Heggli of DRI digs through deep snow to reach a monitoring site during a 2019 field project at the UC Berkeley Central Sierra Snow Laboratory in the Tahoe National Forest.

Credit: M. Heggli. 

Reno, Nev. (May 3, 2022) –In the Sierra Nevada, midwinter “rain-on-snow” events occur when rain falls onto existing snowpack and have resulted in some of the region’s biggest and most damaging floods. Rain-on-snow events are projected to increase in size and frequency in the coming years, but little guidance exists for water resource managers on how to mitigate flood risk during times of rapidly changing snowpack. Their minute-by-minute decisions during winter storms can have long-lasting impacts to people, property, and water supplies.

A new study by a team from DRI, University of California, Berkeley, the National Weather Service, and University of Nevada, Reno, provides the first framework for a snowpack decision support tool that could help water managers prepare for potential flooding during rain-on-snow events, using hourly data from existing snow monitoring stations.

“During rain-on-snow events, the people managing our water resources always have decisions to make, and it’s really challenging when you’re dealing with people’s lives and property and livelihood,” said DRI Graduate Assistant and lead author Anne Heggli, M.S. “With this work, we’re leveraging existing monitoring networks to maximize the investment that has already been made, and give the data new meaning as we work to solve existing problems that will potentially become larger as we confront climate change.”

snow depth sensor installation

Lead author Anne Heggli of DRI installing a snow depth sensor at the UC Berkeley Central Sierra Snow Laboratory in the Tahoe National Forest for the 2021-2022 winter.

Credit: P. Kucera. 

To develop a testable framework for a decision support tool, Heggli and her colleagues used hourly soil moisture data from UC Berkeley’s Central Sierra Snow Laboratory from 2006-2019 to identify periods of terrestrial water input. Next, they developed quality control procedures to improve model accuracy. From their results, they learned lessons about midwinter runoff that can be used to develop the framework for a more broadly applicable snowpack runoff decision support tool.

“We know the condition (cold content) of the snowpack leading into a rain-on-snow event can either help mitigate or exacerbate flooding concerns,” said study coauthor Tim Bardsley of the National Weather Service in Reno. “The challenge is that the simplified physics and lumped nature of our current operational river forecast models struggle to provide helpful guidance here. This research and framework aims to help fill that information gap.”

“This study and the runoff decision framework that has been built from its data are great examples of the research-to-operations focus that has been so important at the Central Sierra Snow Lab for the past 75 years,” said study coauthor Andrew Schwartz, Ph.D., manager of the snow lab. “This work can help inform decisions by water managers as the climate and our water resources change, and that’s the goal – to have better tools available for our water.”

The idea for this project was sparked during the winter of 2017, when Heggli and her brother were testing snow water content sensors in California. Several large rain-on-snow events occurred, including a series of January and February storms that culminated in the Oroville Dam Spillway Crisis.

“I noticed in our sensors that there were these interesting signatures – and I heard a prominent water manager say that they had no idea how the snowpack was going to respond to these rain-on-snow events,” Heggli explained. “After hearing the need of the water manager and seeing the pattern in the data, I wondered if we could use some of that hourly snowpack data to shave off some level of uncertainty about how the snowpack would react to rain.”

Heggli is currently enrolled in a Ph.D. program at UNR, and has been working under the direction of DRI faculty advisor Benjamin Hatchett, Ph.D., to advance her long-term goal of creating a decision support tool for reservoir operators and flood managers.

The results of this study can next be used to develop basin-specific decision support systems that will provide real-time guidance for water resource managers. The study results will also be used in a new project with the Nevada Department of Transportation.

“Anne’s work, inspired by observation, demonstrates how much we still can learn from creatively analyzing existing data to produce actionable information supporting resource management during high-impact weather events as well as the value of continued investment to maintain and expand our environmental networks,” said Hatchett, DRI Assistant Research Professor of Atmospheric Science.

More information:

The full text of the study, Toward snowpack runoff decision support, is available from iScience: https://www.cell.com/iscience/fulltext/S2589-0042(22)00510-7. 

This project was funded by University Corporation for Atmospheric Research’s COMET Outreach program, Desert Research Institute’s Internal Project Assignment program, and the Nevada Space Grant Consortium Graduate Research Opportunity Fellowship. Study authors included Anne Heggli (DRI), Benjamin Hatchett (DRI), Andrew Schwartz (University of California, Berkeley), Tim Bardsley (National Weather Service, Reno), and Emily Hand (University of Nevada, Reno).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Study Shows Importance of Ensuring Participant and Provider Follow-up After a Genetic Screening Result

Study Shows Importance of Ensuring Participant and Provider Follow-up After a Genetic Screening Result

Graphic representation of the DNA sequence

April 27, 2022
RENO, Nev.

Genetics
Genetics Screening
Actionable Care Plans
Above: Graphic representation of the DNA sequence. In a recent study, Healthy Nevada Project scientists looked at the impact that notifying a patient of a positive finding for a CDC Tier 1 condition had on the care that the patient received in the months and years that followed.
Credit: Gio_tto, “Graphic representation of the DNA sequence”, https://www.istockphoto.com/photo/dna-sequence-gm498188318-79526609.

Study Shows Importance of Ensuring Participant and Provider Follow-up After a Genetic Screening Result

New research from the Healthy Nevada Project® finds that a confirmed diagnosis does not always result in changes to patient care
front page of Incomplete Penetrance of Population-Based Genetic Screening Results in Electronic Health Record

The full text of the study,  Incomplete Penetrance of Population-Based Genetic Screening Results in Electronic Health Record, is available from Frontiers in Genetics: https://www.frontiersin.org/articles/10.3389/fgene.2022.866169/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Genetics&id=866169.

Reno, Nev. (April 27, 2022)Presenting individuals with potentially life-altering health information doesn’t mean the individuals – or their healthcare providers – will act on it. Follow-up education and conversations about actionable care plans with patients and their doctors are key next steps, according to new research from the Healthy Nevada Project.  

The Healthy Nevada Project is a genetic screening and research project that launched in 2016 as a partnership between DRI and Renown Health. The project now has more than 50,000 participants, with genetic sequencing provided by Helix 

Between September 2018 and September 2020, the Healthy Nevada Project successfully notified 293 participants that they were genetically at risk for hereditary breast and ovarian cancer syndrome, Lynch syndrome, or familial hypercholesterolemia – three common genetic conditions known collectively as the Centers for Disease Control and Prevention (CDC) Tier 1 conditions. In a study published today in Frontiers in Genetics, Healthy Nevada Project scientists looked at the impact that notifying a patient of a positive finding for a CDC Tier 1 condition had on the care that the patient received in the months and years that followed.  

According to their results, among the 293 Healthy Nevada Project participants who were notified of their genetic risk of a CDC Tier 1 condition, 71 percent of participants with electronic health records shared their findings with healthcare providers. However, only 30 percent of the electronic health records for these patients contained documentation of the genetic diagnosis, and only 10 percent of examined patients experienced a possible change in care after receiving the results of their genetic screening.  

“The Healthy Nevada Project was implemented with a ‘hands-off’ approach where the participants receive their findings and decide with whom and when to share those findings. The findings were not automatically added to their electronic health records,” said Dr. Gai Elhanan, health data scientist at DRI and co-lead author of the study. “What we’re learning now is that to ensure that important genetic findings are integrated into the care journey it is important to make their inclusion into the electronic health records part of the study.” 

This study builds on previous Healthy Nevada Project research published in Nature Medicine demonstrating the importance of screening for CDC Tier 1 conditions, which affect about one in 75 individuals and can be mitigated or even prevented from developing into disease when detected early. This study found that as many as 90 percent of the CDC Tier 1 cases are missed by clinical providers during normal clinical care screenings and examinations. 

During the current study, the Healthy Nevada Project scientists found that 19 percent of studied participants had already developed one of the CDC Tier 1 conditions, and thus would have potentially benefited from earlier notification about their condition. The study team hopes that their findings will encourage individuals in Nevada to obtain genetic testing for these relatively common conditions. Even if individuals are older or have already suffered from diseases related to these conditions, testing could also prove beneficial to siblings, children, and grandchildren who may also be at risk and who could subsequently be screened in the event of a positive finding. 

The study team also encourages informing health care providers of the importance of incorporating genetic diagnoses into the pharmaceutical (for example, for Familial Hypercholesterolemia) and treatment advice given to patients.  

“As a result of this analysis, the clinicians at Renown Health and the Healthy Nevada Project researchers have made significant changes, including obtaining informed consent from participants to report positive findings from their genetics reports directly into their electronic medical record,” said Daniel Kiser, M.S., assistant research scientist of data science at DRI and co-lead author of the study. “This will help both participants, their clinical providers, and the whole state maximize the long-term benefits of the Healthy Nevada Project voluntary population-based genetic screening.”  

Additional information:

The full text of the study,  Incomplete Penetrance of Population-Based Genetic Screening Results in Electronic Health Record, is available from Frontiers in Genetics: https://www.frontiersin.org/articles/10.3389/fgene.2022.866169/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Genetics&id=866169.  

This project was funded by Renown Health, the Renown Health Foundation, and the Nevada Governor’s Office of Economic Development. Study authors included Gai Elhanan (DRI), Daniel Kiser (DRI), Iva Neveux (DRI), Shaun Dabe (Renown Health), Alexander Bolze (Helix), William Metcalf (DRI), James Lu (Helix), and Joseph Grzymski (DRI/Renown Health).  

For more information on the Healthy Nevada Project® or to request genetic screening, please visit: https://healthynv.org/ 

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Renown Health 

Renown Health is the region’s largest, locally governed, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.  

About Helix 

Helix is the leading population genomics and viral surveillance company operating at the intersection of clinical care, research, and data analytics. Helix enables health systems, life sciences companies, payers, and government partners to accelerate the integration of genomic data into patient care and public health decision making. Learn more at www.helix.com.   

New study shows robust increases in atmospheric thirst across much of U.S. during past 40 years

New study shows robust increases in atmospheric thirst across much of U.S. during past 40 years

Dry Nevada landscape with mountains

April 6, 2022
RENO, Nev.

Atmospheric Thrist
Temperature
Climate

Above:  A dry Nevada landscape. New research led by DRI scientists shows that atmospheric thirst is a persistent force in pushing Western landscapes and water supplies toward drought.

Credit: Riccardo Panella/DRI.

New study shows robust increases in atmospheric thirst across much of U.S. during past 40 years

Largest changes centered over Rio Grande region of Southwestern U.S.

A multi-dataset assessment of climatic drivers and uncertainties of recent trends in evaporative demand across the continental U.S.
The full text of the study, A multi-dataset assessment of climatic drivers and uncertainties of recent trends in evaporative demand across the continental U.S., is freely available from the Journal of Hydrometeorology: https://journals.ametsoc.org/view/journals/hydr/23/4/JHM-D-21-0163.1.xml.

Reno, Nev. (April 6, 2022) –In arid Western states, the climate is growing warmer and drier, leading to increased demand for water resources from humans and ecosystems. Now, the atmosphere across much of the U.S. is also demanding a greater share of water than it used to, according to a new study by a team from DRI, University of California, Merced, and Scripps Institution of Oceanography at UC San Diego.

The study was published in the Journal of Hydrometeorology and assessed trends in evaporative demand across the U.S. during a 40-year period from 1980-2020 using five datasets. Evaporative demand, sometimes described as “atmospheric thirst,” is a measure of the potential loss of water from the earth’s surface to the atmosphere based on variables including temperature, humidity, wind speed, and solar radiation.

The team’s findings showed substantial increases in atmospheric thirst across much of the Western U.S. during the past 40 years, with the largest and most robust increases in an area centered around the Rio Grande and Lower Colorado rivers. These regions have experienced changes on the order of two-to-three standard deviations from what was seen during the baseline period of 1980-2000.

“This means that atmospheric thirst conditions in parts of the country are now verging outside of the range that was experienced 20 to 40 years ago, especially in some regions of the Southwest,” said lead author Christine Albano, Ph.D., of DRI. “This is really important to understand, because we know that atmospheric thirst is a persistent force in pushing Western landscapes and water supplies toward drought.”

Figure showing changes in atmospheric thirst
Figure showing changes in atmospheric thirst, measured in terms of reference evapotranspiration (mm), from 1980-2020. The largest changes are centered over the Rio Grande region of the southwestern U.S.
Credit: DRI.
To learn more about the role that different climate variables play in determining atmospheric thirst, Albano and her colleagues analyzed the relative influences of temperature, wind speed, solar radiation, and humidity. They found that, on average, increases in temperature were responsible for 57 percent of the changes observed in all regions, with humidity (26 percent), wind speed (10 percent), and solar radiation (8 percent) playing lesser roles.

“This study shows the dominant role that warming has played on the increasing evaporative demand and foreshadows the increased water stressors the West faces with continued warming,” said study co-author John Abatzoglou, Ph.D., of University of California, Merced.

For farmers and other water users, increases in atmospheric thirst mean that in the future, more water will be required to meet existing water needs. Some of these changes observed in this study are centered over areas where warming temperatures and lower-than-average precipitation are already creating stress on water supplies.

For example, in the Rio Grande region, the study authors calculated that atmospheric thirst increased by 8 to 15 percent between 1980 and 2020. Holding all else equal and assuming no other changes in management, this means that 8 to 15 percent more water is now required to maintain the same thoroughly-watered crop.

“Our analysis suggests that crops now require more water than they did in the past and can be expected to require more water in the future,” said study co-author Justin Huntington, Ph.D., of DRI.

Other impacts of increased atmospheric thirst include drought, increased forest fire area, and reduced streamflows.

“Our results indicate that, decade by decade, for every drop of precipitation that falls, less and less water is likely to drain into streams, wetlands, aquifers, or other water bodies,” said study co-author Michael Dettinger, Ph.D., of Scripps Institution of Oceanography and DRI. “Resource managers, policy makers, and the public need to be aware of these changes and plan for these impacts now and into the future.”

Members of the team are now developing seasonal to sub-seasonal forecasts of evaporative demand.

“We anticipate these types of forecasts will be important for drought and fire forecasting applications,” said study co-author Dan McEvoy, Ph.D., of DRI.

Additional information:

The full text of the study, A multi-dataset assessment of climatic drivers and uncertainties of recent trends in evaporative demand across the continental U.S., is freely available from the Journal of Hydrometeorology: https://journals.ametsoc.org/view/journals/hydr/23/4/JHM-D-21-0163.1.xml

The study team included Christine Albano (DRI), John Abatzoglou (UC Merced), Daniel McEvoy (DRI), Justin Huntington (DRI), Charles Morton (DRI), Michael Dettinger (Scripps Institution of Oceanography/DRI), and Thomas Ott (DRI).

This research was funded by the Sulo and Aileen Maki Endowment Fund to the Desert Research Institute’s Division of Hydrologic Sciences, the National Oceanic and Atmospheric Administration (NOAA) California-Nevada Climate Applications Program (NA17OAR4310284), NOAA National Integrated Drought Information System California-Nevada Drought Early Warning System (NA20OAR4310253C), the NASA Applied Sciences, Water Resources Program (NNX17AF53G), the U.S. Geological Survey Landsat Science Team (140G0118C0007), and USDA-NIFA project (2021-69012-35916).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About UC Merced

UC Merced opened in 2005 as the newest member of the University of California system and is the youngest university to earn a Carnegie research classification. The fastest-growing public university in the nation, UC Merced is on the cutting edge of sustainability in campus construction and design and supports high-achieving and dedicated students from the underserved San Joaquin Valley and throughout California. The Merced 2020 Project, a $1.3 billion public-private partnership that is unprecedented in higher education, nearly doubled the physical capacity of the campus with 11 buildings earning Platinum LEED certification. 

About Scripps Oceanography

Scripps Institution of Oceanography at the University of California San Diego is one of the world’s most important centers for global earth science research and education. In its second century of discovery, Scripps scientists work to understand and protect the planet, and investigate our oceans, Earth, and atmosphere to find solutions to our greatest environmental challenges. Scripps offers unparalleled education and training for the next generation of scientific and environmental leaders through its undergraduate, master’s and doctoral programs. The institution also operates a fleet of four oceanographic research vessels, and is home to Birch Aquarium at Scripps, the public exploration center that welcomes 500,000 visitors each year. 

About UC San Diego

At the University of California San Diego, we embrace a culture of exploration and experimentation. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to look deeper, challenge expectations and redefine conventional wisdom. As one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth and make our world a better place. Learn more at ucsd.edu.

Benjamin Hatchett Receives Board of Regents 2022 Rising Researcher Award

Benjamin Hatchett Receives Board of Regents 2022 Rising Researcher Award

Reno, Nev. (April 4, 2022) – DRI scientist Benjamin Hatchett, Ph.D., has been honored with the 2022 Rising Researcher Award from the Nevada System of Higher Education (NSHE) Board of Regents, in recognition of his early-career accomplishments and potential for future advancement in Earth and environmental sciences.

Hatchett is an Assistant Research Professor in DRI’s Division of Atmospheric Sciences and specializes in hydrometeorology and hydroclimatology of dryland and alpine regions spanning the past, present, and future.

“I am honored to receive this award from the NSHE Board of Regents,” Hatchett said. “I look forward to continuing to shift my efforts towards scientific activities with tangible, actionable outcomes and appreciate this recognition of my accomplishments.”

During the past decade, Hatchett has worked on Great Basin paleoclimate and paleohydrologic reconstructions spanning the past 21,000 years; atmospheric modeling of downslope winds (such as Santa Anas) primarily in California but also globally; the observation, analysis, and prediction of western U.S. natural hazards including floods, heat waves, wildfire, drought, air pollution, landslides, and avalanches; strategies to improve communication of weather forecasts in the U.S.; impacts of environmental extremes on human mobility; and projections of 21st-century climate from urban to continental scales with a specific focus on mountain environments along the Pacific Cordillera.

Dr. Hatchett has published 38 articles in a wide variety of peer-reviewed journals and 24 additional peer-reviewed book chapters, non-reviewed articles, and technical reports. He has worked with numerous research teams, partners, and stakeholders to complete projects funded by agencies such as the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration, and the National Science Foundation. He is most proud of his projects that support decision-making and promote climate resilience.

“Dr. Hatchett has excelled not only in publishing his research in peer-reviewed journals, but also in making science accessible to decision-makers and the public via media interviews, public presentations, and STEM outreach,” said DRI Vice President for Research Vic Etyemezian, Ph.D.

In addition to his research, Hatchett is an active mentor and educator to students of Earth and environmental sciences. He co-teaches a course in air pollution at UNR and is an adjunct faculty member at the Lake Tahoe Community College. He has advised several undergraduate students, served on committees for graduate students in both the Atmospheric Sciences and Hydrologic Sciences programs, and is currently advising one Ph.D. student.

Hatchett holds a B.S. in geography with a minor in hydrogeology, an M.S. in atmospheric sciences, and a Ph.D. in geography, all from the University of Nevada, Reno. He joined DRI as a postdoctoral fellow in 2016 under the mentorship of Professors Michael Kaplan and Craig Smith and became an Assistant Research Professor in 2018.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

New NV Energy Foundation Grant Will Support Wildfire Preparedness in Nevada

New NV Energy Foundation Grant Will Support Wildfire Preparedness in Nevada

burning wildfire

March 30, 2022
RENO, NEV.

Wildfire Preparedness
Weather-Fire-Smoke Model
Fire Mitigation

New NV Energy Foundation Grant Will Support Wildfire Preparedness in Nevada

Funding will boost development of DRI‘s advanced weather-fire-smoke model

Check Presentation NV Energy Foundation

Representatives from NV Energy and DRI gathered Wednesday, March 30, 2022 at the DRI campus to announce a new grant that will provide $150,000 to support the development of a Weather and Research Forecast advanced modeling tool. 

Credit: DRI. 

Reno, Nev. (March 30, 2022) – As the climate warms, wildfires in the Sierra Nevada are happening at unprecedented sizes and intensities, threatening communities and resources throughout Nevada and California. For fire managers trying to understand and predict fire behavior, access to accurate information for decision-making has never been more important.

A generous grant from the NV Energy Foundation will provide $150,000 to support DRI’s development of a Weather and Research Forecast advanced modeling tool that simulates weather, fire, and smoke for firefighting and prescribed fire operations. Forecasts and simulations produced by this model will be available to NV Energy’s fire mitigation team, and other professionals from the prescribed fire and air quality communities in Nevada and California through the work of the California and Nevada Smoke and Air Committee (CANSAC).

“We are committed to protecting our customers and the environment from the increasing risks of natural disasters, which include wildfires,” said Doug Cannon, NV Energy president and chief executive officer. “The NV Energy Foundation is proud to support DRI in the development of this technology that will help firefighters better assess fire risk and keep our communities safe.”

Funds from the new NV Energy Foundation grant will be used to expand the current high-performance computer system that is used by CANSAC. The system will provide an interface where users such as prescribed fire managers can conduct simulations of fire spread and smoke behavior.

Caldor Fire Simulation

Screenshot of a simulation of the Caldor Fire created with the weather-fire-smoke model. Green lines indicate wind direction, red and yellow area indicates fire perimeter, and gray cloud represents smoke.  

Credit: Adam Kochanski/San Jose State University and Tim Brown/DRI. 

The model will allow for risk assessment of specific locations by modeling different burn scenarios, help meteorologists identify small-scale wind flows that could have adverse effects on fire spread and behavior, and provide critical air quality forecasts for wildfires or burn day decisions. Simulations can be run for near future forecasting (a few days out) or longer-term scenario modeling for projects that might occur a year or more into the future.

“This tool will be useful to wildfire fighting operations as well as for prescribed fire planning, which is essential to getting some of our fire-adapted ecosystems back into balance,” said Tim Brown, Ph.D., director of DRI’s Western Regional Climate Center. “By supporting the development of this tool, the NV Energy Foundation is providing a great resource to fire managers in Nevada and California and helping to ensure the safety of firefighters and communities across these two states.”

“With this generous grant, the NV Energy Foundation will play a key role in developing new technology that will be used to solve real-world problems in fire mitigation and fire safety,” said DRI President Kumud Acharya, Ph.D. “This project is an amazing example of how community organizations like NV Energy can partner with DRI scientists to develop solutions to the problems that face our society and environment.”

This project is supported by additional funds from the State of Nevada’s Capacity Building Program and DRI internal funding.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About the DRI Foundation

The DRI Foundation serves to cultivate private philanthropic giving in support of the mission and vision of the Desert Research Institute. Since 1982, DRI Foundation trustees have worked with DRI benefactors to support applied environmental research to maximize the Institute’s impact on improving people’s lives throughout Nevada, the nation, and the world. 

About the NV Energy Foundation

NV Energy maintains the NV Energy Foundation, a 501c3, to support its philanthropic efforts. Through direct grants, scholarships and employee grant programs, the NV Energy Foundation actively supports improvements in the quality of life in NV Energy’s service territories. Information about the NV Energy Foundation is available at nvenergy.com/foundation.

Agencies collaborate to launch wastewater surveillance dashboard

Agencies collaborate to launch wastewater surveillance dashboard

water waste sampling collection
March 23, 2022
LAS VEGAS
Wastewater
COVID-19
Wastewater Surveillance
Above: Waste water samples were collected at the Waste Water Treatment Plant in Pahrump, Nevada.
Credit: Ali Swallow.

Agencies collaborate to launch wastewater surveillance dashboard 

New dashboard will include COVID-19 concentration data, information about variant testing and more. 
Las Vegas, Nev. (March 23, 2022)The University of Nevada, Las Vegas (UNLV), Southern Nevada Health District, Southern Nevada Water Authority (SNWA) and Desert Research Institute (DRI) are partnering to detect early increases of SARS-CoV-2 (the virus that causes COVID) and emerging variants in Southern Nevada through wastewater surveillance. The data will be available on a new dashboard that will be updated weekly at http://empower.unlv.edu. 

The wastewater surveillance program monitors SARS-CoV-2 concentrations from people who contract COVID-19 (with or without symptoms) and shed genetic material in their stools. During the COVID-19 pandemic, wastewater surveillance has tracked, monitored and provided early awareness of increases in volume of the virus as well as changes to the types of variants of COVID-19. Because people who are infected with the virus that causes COVID-19 can take several days before showing symptoms, the information provided through this surveillance program can assist with informing public health strategy and ongoing planning efforts.  

In addition to being an early indicator that cases of COVID-19 may be increasing in a community, wastewater surveillance can also indicate when cases are decreasing, and the surveillance program is not dependent on people seeking testing or health care when they are sick.  

“As we move into the next stage of our response to COVID-19, wastewater surveillance is going to be a powerful tool for detecting potential surges in new cases or the presence of new variants in our community. We will be able to alert the public in a timelier manner and support public health mitigation measures that can help slow the spread of the virus,” said Cassius Lockett, Director of Disease Surveillance and Control for the Health District.  

Currently, the SARS-CoV-2 concentration in the wastewater of participating community water systems across Southern Nevada is tested as part of this program. Nevada was one of the first states to initiate testing, and this surveillance project represents one of the largest projects of its kind in the U.S. 

“The collaboration between our community partners has enabled the collection of one of the largest and most diverse wastewater datasets in the country,” said Edwin Oh, professor and director of the Neurogenetics and Precision Medicine Lab at UNLV. The daily and weekly analyses of these samples will help keep us one step ahead of emerging pathogens and variants.” 

Duane Moser wastewater samples
DRI Associate Research Professor Duane Moser collects water waste samples in Pahrump to detect possible increases of SARS-CoV-2 and emerging variants in Southern Nevada. 
Credit: Ali Swallow.
“DRI is contributing to this collaborative effort by organizing sampling from ten wastewater systems across rural Clark and Nye Counties, substantially expanding the geographic reach of the project and providing time-sensitive epidemiological data that would otherwise be lost,” said DRI Associate Research Professor of Microbiology Duane Moser.  The addition of these outlying sites has a great deal to teach us about how quickly and effectively viruses spread from population centers to outlying areas with lower population densities.” 

While wastewater surveillance can provide early awareness of increases in cases and potential outbreaks, the data provided cannot directly indicate the number of people who are currently infected with COVID-19. The data collected are not intended to be used as the sole method of measuring the prevalence of COVID-19 in the community. The information will be used along with other data by partner and responding agencies for planning purposes.  

More information about wastewater surveillance, and national wastewater surveillance data, is available on the Centers for Disease Control and Prevention website at www.cdc.gov/healthywater/surveillance/wastewater-surveillance/wastewater-surveillance.html 

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Southern Nevada Health District 

The Southern Nevada Health District serves as the local public health authority for Clark County, Boulder City, Henderson, Las Vegas, Mesquite and North Las Vegas. The agency safeguards the public health of the community’s residents and visitors through innovative programs, regulations, and initiatives focused on protecting and promoting their health and well-being. More information about the Health District, its programs, services, and the regulatory oversight it provides is available at www.SNHD.info. Follow the Health District on Facebook, Twitter, and Instagram. 

Childhood Traumas Strongly Impact Both Mental and Physical Health

Childhood trauma and genetics linked to increased obesity risk

HPN Renown and DRI Logos

March 9, 2022
RENO, NV

Childhood Trauma
Genetics
Obesity

Above: The logos for the Healthy Nevada Project, DRI, and Renown Health.

Credit: DRI.

Childhood trauma and genetics linked to increased obesity risk 

New study from the Healthy Nevada Project® shows strong influence of genes and environment on human health 
Front page screenshot of Healthy Nevada Project study

The full text of the study, The Impact of ACEs on BMI: An Investigation of the Genotype-Environment Effects of BMI, is available from Frontiers in Genetics: https://www.frontiersin.org/articles/10.3389/fgene.2022.816660/full

Reno, Nev. (March 9, 2022)New research from the Healthy Nevada Project® found associations between genetics, obesity, and childhood trauma, linking social health determinants, genetics, and disease. The study, which was published this week in Frontiers in Genetics, found that participants with specific genetic traits and who experience childhood traumas are more likely to suffer from adult obesity.  

In 2016, DRI and Renown Health launched the Healthy Nevada Project®, the nation’s first community-based, population health study, which now has more than 60,000 participants. The project is a collaboration with personal genomics company, Helix, and combines genetic, environmental, social, and clinical data to address individual and community health needs with the goal of improving health across the state and the nation.  

The new study focuses on Adverse Childhood Experiences (ACEs), which are traumatic and unsafe events that children endure by the age of 18. Over 16,000 participants in the Healthy Nevada Project® answered a mental health survey, and more than 65 percent of these individuals self-reported at least one ACE occurrence. These 16,000 participants were cross-referenced with their genetic makeup, and clinical Body Mass Index (BMI) measures.  

According to the research team’s findings, study participants who had experienced one or more types of ACE were 1.5 times more likely to become obese adults. Participants who experienced four or more ACEs were more than twice as likely to become severely obese.    

“Our analysis showed a steady increase in BMI for each ACE a person experienced, which indicates a very strong and significant association between the number of adverse childhood experiences and adult obesity,” said lead author Karen Schlauch, Ph.D., of DRI. “More importantly, participants’ BMI reacted even more strongly to the occurrence of ACEs when paired with certain mutations in several genes, one of which is strongly associated with schizophrenia.” 

“We know that genetics affect disease in the Healthy Nevada Project® [https://pubmed.ncbi.nlm.nih.gov/31888951/], and now we are recognizing that ACEs also affect disease,” said Healthy Nevada Project® Principal Investigator Joseph Grzymski, Ph.D., of DRI and Renown Health. “Our new study shows that the combination of genes and environmental factors like ACEs, as well as many social determinants of health, can lead to more serious health outcomes than either variable alone. More broadly, this new work emphasizes how important it is for population genetic studies to consider the impact of social determinants on health outcomes.” 

The study team believes that it is important for clinical caregivers to understand the strong impact that negative childhood experiences such as ACEs can have on both child and adult health. The researchers hope the information from this study will encourage doctors and nurses to conduct simple screenings for ACEs and consider a patient’s social environment and history in combination with genetics when developing treatment plans for better patient health. 

According to the 2019 Youth Behavior Risk Survey (YRBS), 25.6 percent of Washoe County teenagers are overweight or obese. Obesity is a serious health concern for children and adolescents. According to the Centers for Disease Control and Prevention, obese children and adolescents are more likely to become obese as adults.   

“Obese and overweight children and adolescents are at risk for multiple health problems during their youth, which are likely to be more severe as adults,” said Max J. Coppes, MD, PhD, MBA, FAAP, Nell J Redfield Chair of Pediatrics at the University of Nevada Reno School of Medicine, Physician in Chief of Renown Children’s Hospital. “Obese and overweight youth are more likely to have risk factors associated with cardiovascular diseases, such as high blood pressure, high cholesterol, and type 2 diabetes. Losing weight, in addition to a healthy diet, helps to prevent and control multiple chronic diseases and improves quality of life for a lifetime.”  

“We’d like to thank all of the Healthy Nevada Project® participants who provided information to make our work possible,” said Robert Read, M.S., of DRI. “Our research illustrates that it’s not just genetics that cause disease, but that our environment and life experiences interact with our genes to impact our health in ways that we are only beginning to understand.” 

Many thanks to Renown Health, the Stacie Mathewson Behavioral Health and Addiction Institute, and the Center for Genomic Medicine at DRI for supporting this significant work. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org. 

More information: 

The full text of the study, The Impact of ACEs on BMI: An Investigation of the Genotype-Environment Effects of BMI, is available from Frontiers in Genetics: https://www.frontiersin.org/articles/10.3389/fgene.2022.816660/full 

This project was funded by the Stacie Mathewson Behavioral Health and Addiction Institute, Renown Health, and the Renown Health Foundation. Study authors included Karen Schlauch (DRI), Robert Read (DRI), Iva Neveux (DRI), Bruce Lipp (DRI), Anthony Slonim (Renown Health), and Joseph Grzymski (DRI/Renown Health). 

For more information on the Healthy Nevada Project®, please visit: https://healthynv.org/ 

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About Renown 

Renown Health is the region’s largest, locally governed, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org. 

Media contacts: 

Kelsey Fitzgerald, DRI
Senior Communications Official
775-741-0496
Kelsey.fitzgerald@dri.edu 

Renown Public Relations
775-691-7308
news@renown.org 

The DRI Foundation Welcomes New Trustees for 2022

The DRI Foundation Welcomes New Trustees for 2022

Reno, Nev. (Feb. 17, 2022) – The DRI Foundation is pleased to welcome the following new members to its Board of Trustees, each serving a four-year term beginning January 1, 2022:

  • Lisa Gallagher, Chief Financial Officer and Cofounder, Praedicat, Inc.
  • Fafie Moore, Executive Vice President, Southern Nevada, ERA Brokers Consolidated
  • Bob Gagosian, President Emeritus, Woods Hole Oceanographic Institute
  • Bob McCart, Owner, RKM Management
  • Jim King, CFO, R&R Partners and Chairman, R&R Foundation
  • Karen Wayland, Principle, kW Energy Strategies
  • Terry Shirey, President and Chief Executive Officer, Nevada State Bank

These board members have been formally approved by the Nevada System of Higher Education Board of Regents, and will serve alongside existing DRI Foundation board members Mike Benjamin (Chair), Nora James (Vice Chair), Richard Ditton, John Entsminger, Mark Foree, Steve Hill, Stephanie Kruse, Starla Lacy, Janet Lowe, Kristin McMillan Porter, and Ronald Smith.

The members of the Board of Trustees also elected new trustee Bob McCart to serve as Treasurer of the DRI Foundation, for a two-year term beginning January 1, 2022. McCart owns a successful business consulting firm and has significant experience in the for-profit education industry.

“We welcome these new trustees to the DRI Foundation Board and extend our deepest thanks and appreciation to our outstanding current trustees,” said DRI President Dr. Kumud Acharya. “The expertise and philanthropy of DRI Foundation Board Members plays an essential role in funding and promoting DRI research to people and environments in Nevada and around the world.”

“I am honored to lead the DRI Foundation Board of Trustees in supporting DRI’s mission to be a home for science that creates a better future,” said DRI Foundation Chair Mike Benjamin. “We welcome our new Trustees and look forward to the great value that they will bring to our organization.”

###

*DRI Foundation Board Member photos available upon request.

 

About the DRI Foundation

The DRI Foundation serves to cultivate private philanthropic giving in support of the mission and vision of the Desert Research Institute. Since 1982, DRI Foundation trustees have worked with DRI benefactors to support applied environmental research to maximize the Institute’s impact on improving people’s lives throughout Nevada, the nation, and the world. For more information about the DRI Foundation or DRI, please contact Kristin Burgarello (Kristin.Burgarello@dri.edu) or Julie Mathews (Julie.mathews@dri.edu).

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu

NSF-funded Study Finds Eolian Dust Systems Impact Cardio-Pulmonary Health

NSF-funded Study Finds Eolian Dust Systems Impact Cardio-Pulmonary Health

Baylor University paleoclimatologist analyzed gypsum- and quartz-dominated dune systems for possible fine, breathable dust fluxes detrimental to human health

Above: Mark Sweeney and Eric McDonald set up measurements of PI-SWERL at White Sands National Park. Credit: Baylor University. 

Reportsed from Baylor University: https://www.baylor.edu/mediacommunications/news.php?action=story&story=226267

WACO, Texas – A recent National Science Foundation funded study that included Baylor University paleoclimatologist Steven L. Forman, Ph.D., professor of geosciences, evaluates current and future dust sources in central North America with consideration for climate change. These fine dust fluxes are detrimental to asthmatic and general cardio-pulmonary health for populations downwind, particularly areas of west Texas and New Mexico that have large areas of significant dust sources with dry and drought conditions in the past decade.

The study, published in Geology, seeks to characterize dust emission potential from landforms in two end-member eolian systems, where wind is the primary source of sediment transport: the White Sands dune field in New Mexico and the Monahans dune field in west Texas. The study’s lead author is Mark Sweeney, Ph.D., University of South Dakota. Eric McDonald, Desert Research Institute, joined Sweeney and Forman on the research team.

The White Sands dune field is composed of gypsum and a hot spot for dust emissions because the dunes and adjacent playa yield high dust fluxes. However, the active Monahans dune field is composed of quartz and produce low dust fluxes. Adjacent to Monahans, stabilized sand sheets and dunes that contain silt and clay could produce high dust fluxes if reactivated by climate change or anthropogenic disturbance.

“We chose these sites because the gypsum dunes and playa lake environments should be hot spots for dust emission, and the Monahans composed of mostly pure quartz grains should be a low dust emission system. We were wrong about the Monahans,” Forman said.

Field- and model-based estimates of dust emissions from dune systems are difficult to characterize. By considering whole eolian systems — active and stabilized dunes, interdunes, sand sheets and playas — dust emissions can be more accurately estimated for estimating current and future atmospheric dust loading. Atmospheric dust has impacts on radiative forcing, biogeochemical cycles, extreme climate variability and human health.

The researchers utilized a Portable In Situ Wind Erosion Laboratory (PI-SWERL) to measure the dust emission potential in the field. The PI-SWERL, which was developed by a team from DRI, is a circular wind-erosion device, measures concentrations of inhalant particulate matter at different friction velocities from soil surfaces.

“The PI-SWERL is wind tunnel wrapped into a circle which makes this novel technology portable,” Forman said. “Thus, we can quantify the winds speeds and forces necessary to loft small, breathable particle sizes that at certain elevated concentrations induce an asthmatic response and heightened risk of pulmonary mortality and morbidity.”

The PI-SWERL measurements showed considerable differences in the dust emission potential across both systems. Active dunes, sand sheets and interdunes at White Sands generated similarly high dust fluxes. Comparatively, the playa had the widest range of fluxes with the lowest fluxes on moist or hard surfaces and the highest where loose sand and aggregates were at the surface.

In contrast, the Monahans active quartz dunes generated low dust fluxes. However, dry crusted interdunes with loose sand at the surface had much higher fluxes. Dust emissions increase exponentially with rising wind friction velocities for both systems, often associated with common winds 10 to 15 mph.

The results revealed intra- and extra-landform variability in dust fluxes from eolian systems, mostly due to the degree of surface crusting or soil moisture. More dust occurs on surfaces with loose sand or aggregates where saltation bombardment, when wind lifts particles and causes them to hit along the surface with increased velocity, could erode playas or interdunes and aggregates could break apart to create more dust.

Surprisingly, White Sands showed high magnitudes of dust emission from the abrasion of dune sand and erosion of playa sediments, indicating both landforms are particulate sources during dust storms. The Monahans system produced low dust emissions due to low rates of abrasion in active dunes and vegetative cover, which protects the surface from wind erosion. However, the most common landforms — sand sheets that surround the dune fields for miles — are rich sources for fine breathable particles, at the same magnitude as White Sands.

“The most surprising results was variability in dust emissivity for White Sands landforms and the very high dust flux from the flat sand sheet area that covers most surfaces in west Texas. There is a hidden dust source in these deposits and soils, which were unrecognized,” Forman said.

Dust emission assessments are important to current and future climate modeling. Wind-dominated and drought-sensitive systems could see stabilized dunes and sand sheets become reactivated, or adjacent playas may increase emissions. Potential atmospheric dust loading can occur from diverse landforms in active and presently stabilized eolian systems.

“Atmospheric dust concentrations are important for the global heat-balance and locally can lead to a thermal-blanking effect raising local temperatures. Recent studies associate ozone degradation with elevated dust concentrations high in the atmosphere,” Forman said. “As our planet warms from increasing greenhouse gases many deserts will expand, and grassland areas like on the Southern High Plains will diminish, revealing a limitless supply of dust that will worsen aridity and is detrimental to human health. Understanding the land surface response to climate warming is critical for future sustainability.”

###

About Baylor University

Baylor University is a private Christian University and a nationally ranked Research 1 institution. The University provides a vibrant campus community for more than 20,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest continually operating University in Texas. Located in Waco, Baylor welcomes students from all 50 states and more than 90 countries to study a broad range of degrees among its 12 nationally recognized academic divisions.

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

New USDA Grant to Support Climate Resilience Planning in Indian Country

New USDA Grant to Support Climate Resilience Planning in Indian Country

“Native Climate” project will build relationships and narrow the climate justice gap in Native American communities of the Intermountain West

Above: The new Native Climate project will work to support climate resilience planning in Indian Country. Greenhouses at Salish Kootenai College (upper left), Grey Farrell near Tuba City on the Navajo Reservation (upper right), Pyramid Lake (lower right), a schoolbus on the Navajo Reservation near Tuba City (lower left). Credit: Maureen McCarthy/DRI

Reno, Nev. (Jan 13, 2022) – A collaborative team of researchers led by Maureen McCarthy, Ph.D. of DRI has received a $1.5 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture (USDA-NIFA) to support and strengthen the role of USDA Climate Hubs in Indian Country.

The USDA Climate Hubs work across ten regions of the U.S. to support agricultural producers and professionals by providing science-based, region-specific information about climate change and climate adaptation strategies. The new DRI-led project, titled “Native Climate: Strengthening the role of Climate Hubs in Indian Country,” will support the Climate Hubs by expanding the reach of their services and outreach to Tribal Extension agents, agricultural producers, and youth educators in the Southwest and Northern Plains regions.

“From heatwaves to extreme winds, droughts, wildfires, and floods, the climate crisis poses huge adaptation challenges to Native American communities in the Intermountain West – and there are huge inequities across the U.S. in providing climate services and resources to Tribes,” said McCarthy, Native Climate program director from DRI. “Many of these communities are incredibly resilient and forward-thinking in terms of finding ways to adapt to this rapidly warming world, and their knowledge of the landscape pre-dates modern science. This project is an amazing opportunity to build connections and sustainable, trusted relationships that support information sharing between Tribal communities, Climate Hubs, Tribal Extension partners, researchers, and educators.”

Native Climate will address long-standing issues related to climate injustice in Indian Country through culturally-appropriate information sharing and by increasing the representation of Native American Tribal members in climate-related research and outreach positions. The project team includes researchers, Tribal Extension educators, and Climate Hub leaders from DRI, the University of Nevada, Reno Extension, University of Arizona, University of Montana (UM), and the Southwest and Northern Plains Climate Hubs.

The project supports the hiring of several Native Climate Fellows, who will work directly with the Southwest and Northern Plains Climate Hubs in coordinating climate data needs, extending outreach to agricultural producers, and sharing youth climate education materials. One Native Climate Data Fellow will be stationed in the Montana Climate Office (MCO) at UM. A second Native Climate Agricultural Producer Fellow will work through UNR-Extension, and a third Native Climate Youth Education Fellow will be hired by DRI.

DRI’s Native Climate Youth Education Fellow will work with mentor Meghan Collins, M.S., to continue growing an existing Teaching Native Waters Community of Practice, which fosters communication between educators, FRTEP agents, and scientists. This Fellow will also work with the Climate Hubs and other NIFA project teams to adapt climate education resources to be place-based and culturally relevant.

“Educators, scientists, decision-makers, and leaders all have important knowledge to bring to the table,” said Collins, assistant research scientist at DRI. “This community of practice creates spaces for us to listen, respond, and innovate. Together, we are seeking solutions that engage youth in closing the gap in climate justice.”

The project will also create a new student internship program for Native Climate Reporters at DRI, which will support three or more Native students a year studying communications, journalism, agriculture or STEM. The interns will report on stories about climate impacts and adaptation by tribes in their regions, and gain experience developing and producing multi-media communications, with mentorship from Native Climate Communications Coordinator Kelsey Fitzgerald, M.A.

“Only a very small percentage of journalists at U.S. news organizations are Native people, which has a huge impact on the news coverage we see or don’t see about climate change and other challenges being addressed by Tribal communities,” said Fitzgerald, senior communications official at DRI. “We are so excited to be able to provide this opportunity for Native students interested in climate reporting to develop their communications experience and skills, so that they can play an active role in providing more accurate news coverage and telling the stories that are important to their regions.”

Other components of the project include a “Native Climate Toolkit” – a web-based interactive resource clearinghouse, and impact reporting and alert tools. A Native Climate Advisory Group will help the team engage tribes in the region, leverage resources from partner organizations, and conduct culturally-respectful project evaluation.

Native Climate builds on partnerships established under previous USDA-funded projects Native Waters on Arid Lands (nativewaters-aridlands.com), the COVID CARE Toolkit Project, All Climate is Local virtual conference, and Teaching Native Waters. Native Climate will begin in March 2022 and run through March 2027.

 

More information:

To view the full award announcement from USDA, please visit: https://www.usda.gov/media/press-releases/2022/01/12/usda-invests-9m-expand-reach-and-increase-adoption-climate-smart

 

###

 

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

NASA grant funds research for sunscreen on Mars

NASA grant funds research for sunscreen on Mars

NASA grant funds research for sunscreen on Mars

December 30, 2021
RENO, NEV.

By Michelle Werdann, UNR

NASA
Mars
Sunscreen

Above: Vulpinic acid sits on a lab bench next to several lichen species.

Credit: UNR

High radiation on Mars is one of the many reasons the Red Planet seems inhospitable. Two chemistry professors from the University are using solutions from early Earth to solve that problem on Mars.

Reposted from University of Nevada, Reno – https://www.unr.edu/nevada-today/news/2021/sunscreen-for-mars

What do a fungus, a bacterium and an astronaut all have in common? They all need protection from ultraviolet radiation, especially if they’re living on Mars. Researchers at the University of Nevada, Reno in collaboration with Henry Sun of the Desert Research Institute and Christopher McKay of the NASA Ames Research Center received a NASA Established Program to Stimulate Competitive Research (EPSCoR) seed grant to study how they can mimic biology to make some powerful sunscreen.

Serious sunscreen

Lichens are the colorful green moss-like growths found on rocks and trees throughout the Sierras (in fact, Tanzil Mahmud, a graduate student working on this project, went on a hike in Oregon and collected some lichen for the lab). While they appear to be a single organism, lichens are the result of a symbiotic relationship between bacteria and fungi forming a composite organism. Ultraviolet radiation can be harmful to plants if it’s too energetic, so these uniquely bonded organisms evolved a “sunscreen” to protect themselves.

The “sunscreen” is a pigment that is produced by either the bacteria or the fungi. Different species evolved the pigment on their own, suggesting that they were vital to survival in early Earth’s atmosphere. The researchers hypothesize that the absorbed radiation is dissipated in the pigment and transferred into vibrational energy, which dissipates to the environment as heat.

Tanzil Mahmud with lichen sample

Tanzil Mahmud is a graduate student in Christopher Jeffrey’s lab. He is shown holding a lichen he collected for the lab on a hiking trip in Oregon. 

Credit: UNR

Billions of years ago, when Earth’s atmosphere wasn’t as protective as it is now, cyanobacteria had to protect themselves from intense ultraviolet radiation—the same radiation astronauts would be exposed to on Mars. The bacteria evolved pigments that absorbed that harsh radiation and protected the cells. It is believed that these bacteria also photosynthesized and produced oxygen, thus building the ozone layer, which now protects us from the sun’s harsh radiation.

The idea of microbial sunscreens came from Sun. Sun is a molecular microbiologist and an expert on life found in extremely harsh conditions. He noticed the lichen in places like Florida or the Amazon have very green coloration, but that lichens in the desert have different colors. This led Sun to wonder what the pigments did for the lichen.

“The pigment is only in the outer layer. I came to the realization that the pigment has nothing to do with photosynthesis. It must be related to shielding the UV,” Sun said. That’s when he reached out to Matthew Tucker, an associate professor in the Department of Chemistry. Tucker suggested he and Sun meet with associate professor Christopher Jeffrey, also from the Department of Chemistry, and Sun’s curiosity about the pigment spread quickly. The researchers started to design an experiment to determine if and how the pigments evolved to shield the lichen from the sun’s radiation.

Harvesting compounds…then blasting them with radiation

Jeffrey studies the diversity of secondary metabolites, which can perform many different functions in an organism and are often very specific to a species. And as Jeffrey emphasizes, they’re not secondary because they’re unimportant. Using synthetic chemistry and analytical tools, Jeffrey studies secondary metabolites, such as the pigments, with the goal of understanding their relationship to other molecules and to the organism itself.

 

Wolf lichen sample

Jeffrey holds a vial of vulpinic acid isolated from lupus litharium, or Wolf lichen. Wolf lichen is found in Nevada, and the sample they isolated the vulpinic acid from was collected on a camping trip at Yuba Pass. The yield for the pigment is relatively high because five percent of the lichen’s mass is composed of the pigment.

Credit: UNR

Jeffrey’s research will focus on isolating the pigments from the lichen and using synthetic chemistry techniques to produce larger quantities of the pigments, because harvesting them from the lichen doesn’t necessarily produce a high yield of pigment. Then comes the matter of making sure the pigments will hold up to intense energy. That’s where Tucker’s lab comes in.

Tucker’s lab specializes in femtosecond laser spectrometry. A femtosecond is a millionth of a billionth of a second, and ultra-fast lasers can work like cameras with a shutter speed that can catch molecular movement and energy flow at that tiny time scale.

“I’m interested in understanding structural dynamics and the relationships to biological systems using laser spectroscopy,” said Tucker. He studies how energy can flow in an environment, or in this case, within the pigments and their environment.

Once in Tucker’s lab, the pigments will be placed in the path of a laser that is guided by a series of mirrors that will allow the researchers to determine exactly when the laser hits the pigment, which happens at the speed of light. The equipment in Tucker’s lab is precise enough to account for the time difference generated by the mirrors. The laser beam will strike the pigment, but instead of letting the light through, the pigment will dissipate that energy.

 

Laser beam

The laser beam in Tucker’s lab is powerful enough to burn your finger.

Credit: UNR

The evolution of the pigments to work as they do is impressive. The pigments prevent unfavorable chemical reactions from happening inside the cells that result from the absorption of ultraviolet light. Instead, the pigments dissipate the energy quickly and a most safe and effective way.

Utilizing their findings, researchers hope to develop a supplement that can be consumed by astronauts that will give them the same protective effects that the lichens have, like a sunscreen that protects you from the inside.

“And now, once you have this protection sorted out, you can engineer plant life in that way, now you can start to grow plant life on Mars. You can generate some ozone possibilities and ultimately you don’t need all that UV protection,” Tucker said.

Sun said the bacteria have moved a lethal problem (the radiation) to a manageable chemical problem (oxidation), but that because the bacteria have to deal with the oxidation, they may contain useful antioxidants that can be synthesized in labs like Jeffrey’s.

Other applications of these pigments might be more commercial, such as a deck paint that withstands sun exposure for longer periods of time.

Researchers also hope to understand the structure of the sheath that contains the pigments. Typically, these carbohydrate sheaths are water-soluble, but the pigments don’t wash away when it rains on the lichen. Sun says this indicates the sheath is a “chemically perfect scaffold” for the pigment.

Early Earth organisms like cyanobacteria are useful analogs for organisms surviving in harsh environments. Different organisms have solved the radiation problem in the same way.

“There may not be life on Mars, but it’s not because of the radiation,” Sun said. “If other conditions are conducive to life, the radiation would be an easy problem to solve.”

Credit: UNR

Spanning the disciplines

As these symbiotic lichens demonstrate, working together can lead to a beautiful thing, and Tucker is no stranger to that idea. He is currently a co-principal investigator working with other faculty on two large Department of Energy projects for $2.5 million and $2.6 million.

“These collaborations are essential for the project’s success and show how unselfish cooperativity amongst the sciences benefits everyone,” Associate Dean of the College of Science Vince Catalano said.

This research is an intersection of biology, chemistry and physics, which is right up Jeffrey’s alley. As a researcher in the Hitchcock Center for Chemical Ecology, Jeffrey knows how important it can be to reach across the discipline divide. The Hitchcock Center for Chemical Ecology is a program at the University funded by Mick Hitchcock, who developed a groundbreaking treatment for HIV. The program is rooted in interdisciplinary research, particularly between biology, ecology and chemistry. Sun also emphasized the importance of working across fields.

“I’m not a chemist,” Sun said. “So, like the lichen this partnership is mutually beneficial.”

“NASA relies heavily on outside scientists to define the science goal of missions and to analyze the data and put the results in the broad scientific context,” said McKay. “Because missions are interdisciplinary (they usually involve several instruments and several science objectives) the interdisciplinary projects are very important to this process.”

The purpose of the NASA ESPSCoR grant is to bring a wider range of fields into aerospace research activities and apply those fields. Jeffrey has partnered with faculty at Nevada State College (NSC) to develop an interdisciplinary STEM internship program that will bring NSC students to the University campus. This summer internship program will allow those students to gain real research experience in chemistry, biology and physics.

“With the undergraduate interns they get exposure to how the sciences work together, which is important for job and workforce development,” Jeffrey said.

The research team is also focused on producing a short documentary.

“The goal of the documentary is to engage the public that way, because they might see the outcome of science, or the outcome of sending something to the Moon, but often they don’t see how it really takes a huge multi-disciplinary group to not only have their expertise in their sciences, but see the pathway that unites all of those together, and figure out how to work with each other to deliver an outcome,” Tucker said.

“We want to train students to think broadly,” Sun said. “We’re led to a narrow path of thinking. That’s the reason, I think, this interdisciplinary idea has merit.”

Within an Antarctic Sea Squirt, Scientists Discover a Bacterial Species With Promising Anti-Melanoma Properties

Within an Antarctic Sea Squirt, Scientists Discover a Bacterial Species With Promising Anti-Melanoma Properties

Within an Antarctic Sea Squirt, Scientists Discover a Bacterial Species With Promising Anti-Melanoma Properties

December 1, 2021
RENO, NEV.

By Kelsey Fitzgerald

Antarctic Sea Squirt
Melanoma
Health

Above: Late spring at Arthur Harbor. The waters surrounding Anvers Island, Antarctica, are home to a species of sea squirt called Synoicum adareanum. New research has traced the production of palmerolide A, a key compound with anti-melanoma properties, to a member of this sea squirt’s microbiome.

Credit: Alison E. Murray, DRI

New study brings important advances for Antarctic science and natural products chemistry

There are few places farther from your medicine cabinet than the tissues of an ascidian, or “sea squirt,” on the icy Antarctic sea floor – but this is precisely where scientists are looking to find a new treatment for melanoma, one of the most dangerous types of skin cancer.

In a new paper that was published today in mSphere, a research team from DRI, Los Alamos National Laboratory (LANL), and the University of South Florida (USF) made strides toward their goal, successfully tracing a naturally-produced melanoma-fighting compound called “palmerolide A” to its source: a microbe that resides within Synoicum adareanum, a species of ascidian common to the waters of Antarctica’s Anvers Island archipelago.

“We have long suspected that palmerolide A was produced by one of the many types of bacteria that live within this ascidian host species, S. adareanum,” explained lead author Alison Murray, Ph.D., research professor of biology at DRI. “Now, we have actually been able to identify the specific microbe that produces this compound, which is a huge step forward toward developing a naturally-derived treatment for melanoma.”

Synoicum adareanum

Synoicum adareanum in 80 feet of water at Bonaparte Point, Antarctica. New research has traced the production of palmerolide A, a key compound with anti-melanoma properties, to a suite of genes coded in the genome by a member of this sea squirt’s microbiome.

Credit: Bill J. Baker, University of South Florida.
Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential

The full study, Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with anti-melanoma palmerolide biosynthetic potential, is available from mSphere.

The bacterium that the team identified is a member of a new and previously unstudied genus, Candidatus Synoicihabitans palmerolidicus. This advance in knowledge builds on what Murray and her colleagues have learned across more than a decade of research on palmerolide A and its association with the microbiome (collective suite of microbes and their genomes) of the host ascidian, S. adareanum.

In 2008, Murray worked with Bill Baker, Ph.D., professor of chemistry at USF and Christian Riesenfeld, Ph.D., postdoctoral researcher at DRI to publish a study on the microbial diversity of a single S. adareanum organism. In 2020, the team expanded to include additional researchers from LANL, USF, and the Université de Nantes, and published new work identifying the “core microbiome” of S. adareanum – a common suite of 21 bacterial species that were present across 63 different samples of S. adareanum collected from around the Anvers Island archipelago.

In the team’s latest research, they looked more closely at the core microbiome members identified in their 2020 paper to determine which of the 21 types of bacteria were responsible for the production of palmerolide A. They conducted several rounds of environmental genome sequencing, followed by automated and manual assembly, gene mining, and phylogenomic analyses, which resulted in the identification of the biosynthetic gene cluster and palmerolide A-producing organism.

“This is the first time that we’ve matched an Antarctic natural product to the genetic machinery that is responsible for its biosynthesis,” Murray said. “As an anti-cancer therapeutic, we can’t just go to Antarctica and harvest these sea squirts en masse, but now that we understand the underlying genetic machinery, it opens the door for us to find a biotechnological solution to produce this compound.”

“Knowing the producer of palmerolide A enables cultivation, which will finally provide sufficient quantity of the compound for needed studies of its pharmacological properties,” added Baker.

 

A diver collects samples of Synoicum adareanum in support of a microbiome and biosynthetic gene cluster study. Palmer Station Antarctica, March 2011.

Credit: Bill Dent, University of South Florida.

Many additional questions remain, such as how S. adareanum and its palmerolide-producing symbiont are distributed across the landscape in Antarctic Oceans, or what role palmerolide A plays in the ecology of this species of ascidian.  Likewise, a detailed investigation into how the genes code for the enzymes that make palmerolide A is the subject of a new report soon to be published.

To survive in the harsh and unusual environment of the Antarctic sea floor, ascidians and other invertebrates such as sponges and corals have developed symbiotic relationships with diverse microbes that play a role in the production of features such as photoprotective pigments, bioluminescence, and chemical defense agents. The compounds produced by these microbes may have medicinal and biotechnological applications useful to humans in science, health and industry. Palmerolide A is one of many examples yet to be discovered.

“Throughout the course of disentangling the many genomic fragments of the various species in the microbiome, we discovered that this novel microbe’s genome appears to harbor multiple copies of the genes responsible for palmerolide production,” said Patrick Chain, Ph.D., senior scientist and Laboratory Fellow with LANL. “However the role of each copy, and regulation, for example, are unknown. This suggests palmerolide is likely quite important to the bacterium or the host, though we have yet to understand it’s biological or ecological role within this Antarctic setting.”

“This is a beautiful example of how nature is the best chemist out there,” Murray added. “The fact that microbes can make these bioactive and sometimes toxic compounds that can help the hosts to facilitate their survival is exemplary of the evolutionary intricacies found between hosts and their microbial partners and the chemical handshakes that are going on under our feet on all corners of the planet.”

Diver in the Antarctic Peninsula

Andrew Schilling (University of South Florida) dives in 100 feet of water at Cormorant Wall, Antarctica. Samples for microbiome characterization were collected by SCUBA divers working in the chilly subzero seas off Anvers Island, in the Antarctic Peninsula.

Credit: Bill J. Baker, University of South Florida. 

More information:

The full study, Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential, is available from mSphere.

Study authors included Alison Murray (DRI), Chein-Chi Lo (LANL), Hajnalka E. Daligault (LANL), Nicole E. Avalon (USF), Robert W. Read (DRI), Karen W. Davenport (LANL), Mary L. Higham (DRI), Yuliya Kunde (LANL), Armand E.K. Dichosa (LANL), Bill J. Baker (USF), and Patrick S.G. Chain (LANL).

This study was made possible with funding from the National Institutes of Health (CA205932), the National Science Foundation (OPP-0442857, ANT-0838776, and PLR-1341339), and DRI (Institute Project Assignment).

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu. 

About The University of South Florida

The University of South Florida is a high-impact global research university dedicated to student success. Over the past 10 years, no other public university in the country has risen faster in U.S. News and World Report’s national university rankings than USF. Serving more than 50,000 students on campuses in Tampa, St. Petersburg and Sarasota-Manatee, USF is designated as a Preeminent State Research University by the Florida Board of Governors, placing it in the most elite category among the state’s 12 public universities. USF has earned widespread national recognition for its success graduating under-represented minority and limited-income students at rates equal to or higher than white and higher income students. USF is a member of the American Athletic Conference. Learn more at www.usf.edu.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.