Seeking answers from the ashes

Seeking answers from the ashes

Seeking answers from the ashes

January 20, 2022
RENO, NEV.

By Kelsey Fitzgerald

Above: A soil collection field site located within the perimeter of Dixie fire. November 18, 2021.

Credit: Vera Samburova.

DRI scientists study soil dynamics in the wake of Sierra Nevada wildfires

After a wildfire, soils in burned areas become temporarily water-repellent, resulting in increased risk of flooding and erosion in the months that follow. Scientists and land managers have never thoroughly understood why or how this happens – but when last summer’s Dixie, Tamarack, and Caldor fires burned through the Sierra Nevada in close proximity to DRI’s Reno campus, scientists Brad Sion, Ph.D., Vera Samburova, Ph.D., and Markus Berli, Ph.D., jumped into action. 

The team, led by Sion, obtained a Rapid Response Research grant from the National Science Foundation for a new project aimed at exploring the impacts of wildfires on physical and chemical properties of burned soils.

Brad Sion
vera samburova

Above, left: Brad Sion, Ph.D., Assistant Research Professor of Geomorphology, holds a frozen chunk of burned soil at a soil sample collection site  near Kirkwood in the wake of the Tamarack Fire.

Credit: Vera Samburova.

Above, right: Vera Samburova, Ph.D., inspects soils in a burned area near Frenchman Lake that was affected by the Beckwourth Complex Fire.

Credit: Brad Sion.

To collect soil samples before the burned areas were impacted by rain or snowfall, time was of the essence. In October, the team made several trips to nearby fire sites to collect soil samples and to conduct field measurements of soil water repellency.

Then, in late October, a major atmospheric river storm came through. The team’s next visit to the fire sites revealed a changed landscape – a real-world example of how wildfires and water repellent soils can impact ecosystems and infrastructure.

“When we first went out into the field, the sites were very dry and ash-covered,” said Samburova. “When we went back out after the atmospheric river storm, we saw lots of mudslides along the roads, and even dirt on top of the road in some places. The soil was very mushy at the surface, but bone dry within centimeters below. And a lot of water was staying on the surface. It was hard to walk on – very slippery.”

water droplet penetration test results
erosion and mudslides

Above, left: The results of a water droplet penetration test on burned soils at the Dixie fire show a high degree of soil water repellency.

Credit: Vera Samburova.

Above, right: After a late October atmospheric river storm passed through the region, researchers observed erosion and mudslides field sites at the Dixie fire. 

Credit: Vera Samburova.

An interdisciplinary approach

Although previous studies have examined impacts of fire on soils in a controlled laboratory setting, the new DRI study will be one of the first to investigate changes in soil properties and their interrelationships using samples collected directly from freshly burned forests. This work builds upon earlier research by co-investigators Samburova and Berli, which investigated the impacts of fire smoke on water repellency of sand samples.

The team, which includes experts from all three of DRI’s research divisions, is approaching their research questions from several angles. Sion is leading the effort to measure the hydraulic (water-related) and thermal (heat-related) properties of burned soils. Samburova is analyzing organic compounds found in the burned soil samples, and Berli is conducting tests to assess the degree of soil water repellency.

Together, their results will provide new insight into linkages between fire burn severity, changes in soil thermal and hydraulic properties, and more.

“Our goal is to understand from a basic science perspective, what the cause is for these various soil characteristics pre- and post- fire,” said Sion. “If we can look at different fire conditions and the soil conditions that result, then we can say something about how a soil may respond in the future, and eventually that information can be extrapolated to different landscape settings.”

At present, the researchers have completed sample collection and are analyzing samples in their respective laboratories in Reno and Las Vegas. They plan to return to their field sites next fall to see how the soil water repellency changes over time.

As climate warms and western wildfire activity increases, Sion and his colleagues believe that understanding how forest fires impact soil properties will continue to be a topic of growing importance.

“Climate change and wildfires are not problems that are unique to the Sierras,” Sion said. “Whether you’re in the Pacific Northwest, Canada, Alaska, or elsewhere, you’re seeing increases in fire activity. People are thinking about the landscape responses and what they mean.”

Diana Brown

Diana Brown, Staff Research Scientist of Geomorphology, analyzes samples in the Soil Characterization and Quaternary Pedology laboratory in Reno. The soil samples have been saturated with water and contain tensiometers and heat probes to analyze hydraulic and thermal properties of the soil.

Credit: DRI.

Funding for this study is provided by the National Science Foundation (award # 2154013). Additional DRI scientists participating in this project include Hans Moosmüller, Ph.D., Diana Brown, M.S., Chris Baish, M.S., Janelle Bustarde, Palina Bahdanovich, Shelby Inouye, Adam Hackbarth, Zimri Mena and Kendrick Seeber.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Yi Zhang of Princeton University Receives DRI’s 23rd Annual Wagner Award for Women in Atmospheric Science

Yi Zhang of Princeton University Receives DRI’s 23rd Annual Wagner Award for Women in Atmospheric Science

Photo: Yi Zhang, Ph.D,, (left) of Princeton University and Vera Samburova, Ph.D., (right) of DRI stand outside on DRI’s Reno campus following the Wagner Award Ceremony on Sept. 16, 2021. Credit: DRI.


Wagner Award is the only such honor for graduate women in the atmospheric sciences in the United States

 

Reno, Nev. (Sept 17, 2021) – DRI is pleased to announce that the 23rd annual Peter B. Wagner Memorial Award for Women in Atmospheric Sciences has been awarded to Yi Zhang, Ph.D., of Princeton University. Zhang received this honor on September 16 at an award ceremony and public lecture on her winning paper at the DRI campus in Reno.

The Wagner Award recognizes a woman pursuing a graduate education in the atmospheric sciences who has published an outstanding academic paper and includes a $1,500 prize.  This competitive national award has been conferred annually by DRI since 1998 and is the only such honor for graduate women in the atmospheric sciences in the United States.

Zhang is a student in Princeton University’s Program of Atmospheric and Oceanic Sciences. Her paper, Projections of tropical heat stress constrained by atmospheric dynamics, was published earlier this year in Nature Geoscience journal.

“We are pleased to honor Yi Zhang with this award, based on her outstanding research addressing knowledge gaps in model projections of extreme heat in tropical regions,” said Chair of the Wagner Award Selection Committee and Associate Research Professor in DRI’s Division of Atmospheric Sciences Vera Samburova. “Zhang was selected from a very strong pool of applicants from excellent colleges and universities around the U.S., and we hope that this recognition of her amazing contributions to atmospheric science helps her as she moves forward with her career.”

Runners up for the 2021 Award included: 2nd place  –  Victoria Ford from the Department of Geography, Texas A&M University College of Geosciences; 3rd place – Lily Hahn from the Department of Atmospheric Sciences, University of Washington; and, Ting-Yu Cha from the Department of Atmospheric Science, Colorado State University.

ABOUT THE PETER B. WAGNER MEMORIAL AWARD

Ms. Sue Wagner—former Nevada Gaming Commissioner, Nevada Lieutenant Governor, and DRI employee and widow of Dr. Peter B. Wagner—created the Peter B. Wagner Memorial Award for Women in Atmospheric Sciences in 1998. Dr. Wagner, an atmospheric scientist who had been a faculty member at the DRI since 1968, was killed while conducting research in a 1980 plane crash that also claimed the lives of three other Institute employees.

In 1981, Dr. Wagner’s family and friends established a memorial scholarship to provide promising graduate students in the DRI’s Atmospheric Sciences Program a cash award to further their professional careers. Ms. Wagner later extended that opportunity nationally and specifically for women through the creation of the Peter B. Wagner Memorial Award in 1998.

For more information on the Peter B. Wagner Memorial Award, please visit: https://www.dri.edu/about/awards-and-scholarships/wagner/

###

The Desert Research Institute (DRI)  is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu

Does Cold Wildfire Smoke Contribute to Water Repellent Soils in Burned Areas?

Does Cold Wildfire Smoke Contribute to Water Repellent Soils in Burned Areas?

Does Cold Wildfire Smoke Contribute to Water Repellent Soils in Burned Areas?

May 25, 2021
RENO, NEV.

By Kelsey Fitzgerald

Soil Science
Wildfires
Hydrology

Above: After a wildfire, soils in burned areas often become water repellent, leading to increased erosion and flooding after rainfall events. The hillside shown here burned in California’s Loyalton Fire during August 2020.

Credit: Kelsey Fitzgerald/DRI.

A new DRI pilot study finds severe water repellency in sand samples after treatment with both hot and cold smoke.

After a wildfire, soils in burned areas often become water repellent, leading to increased erosion and flooding after rainfall events – a phenomenon that many scientists have attributed to smoke and heat-induced changes in soil chemistry. But this post-fire water repellency may also be caused by wildfire smoke in the absence of heat, according to a new paper from the Desert Research Institute (DRI) in Nevada.

In this pilot study (exploratory research that takes place before a larger-scale study), an interdisciplinary team of scientists led by DRI Associate Research Professor of Atmospheric Science Vera Samburova, Ph.D., exposed samples of clean sand to smoke from burning Jeffrey pine needles and branches in DRI’s combustion chamber, then analyzed the time it took for water droplets placed on the sand surface to be absorbed – a measure of water repellency.

Natasha Sushenko processes samples in the Environmental Microbiology Lab at the Desert Research Institute during a COVID-19 wastewater monitoring study.

A new pilot study by an interdisciplinary team from DRI exposed samples of clean sand to smoke from burning Jeffrey pine needles and branches, then analyzed the time it took for water droplets placed on the sand surface to be absorbed — a measure of water repellency. After exposure to smoke, water droplets sometimes remained on the sand surface for more than 50 minutes without soaking in.

Credit: Vera Samburova/DRI.

The full text of the paper, Effect of Biomass-Burning Emissions on Soil Water Repellent: A Pilot Laboratory Study, is available from Fire: https://www.mdpi.com/2571-6255/4/2/24

The pilot study investigated the effects of smoke and heat on water repellency of the sand and was the first study to also incorporate an analysis of cold smoke. In the experiments, sand was used in place of soil because it could be cleaned thoroughly and analyzed accurately, and Jeffrey pine for a fuel source because it represents a common wildland fire fuel in the Western U.S.

Before exposure to Jeffrey pine smoke, water droplets placed on the surface of the sand samples were quickly absorbed. But after exposure to smoke, the sand samples showed severe-to-extreme water repellency, in some cases retaining water droplets on the sand surface for more than 50 minutes without soaking in. It made little difference whether or not samples had been exposed to heat and smoke, or just cold smoke.

“The classic explanation for fire-induced water repellency is that it is caused as smoke diffuses under rather hot conditions and settles down into the soils, but our work shows that the smoke does not have to be hot to turn the sand hydrophobic — simply the presence of the chemical substances in the smoke is enough,” Samburova said. “This is something we really need to look deeper into because soil water repellency leads to increases in flooding, erosion, and surface runoff.”

Above, left: Jeffrey pine needles and sticks were used as a fuel source in the new DRI study because Jeffrey pine represents a common wildland fire fuel in the Western U.S.

Credit: Vera Samburova/DRI.

Above, right: Jeffrey pine needles and branches burn inside of the combustion chamber at DRI during a new study that investigated the effects of smoke and heat on water repellent of sand samples.

Credit: Vera Samburova/DRI.

This study built on previously published work by former DRI postdoctoral researcher Rose Shillito, Ph.D., (currently with the U.S. Army Corps of Engineers), Markus Berli, Ph.D., of DRI, and Teamrat Ghezzehei, Ph.D., of University of California, Merced, in which the researchers developed an analytical model for relating soil water repellency to infiltration of water.

“Our earlier paper focused on how fire changes the properties of soils, from a hydrology perspective,” Berli explained. “In our current study, we were interested in learning more about the chemistry behind the process of how soils come to be hydrophobic. We’re bringing together geochemistry and organic geochemistry with soil physics and hydrology to understand the impact of fire-induced water repellency on hydrology.”

The project team is now working on a larger proposal to further investigate questions touched on by this study about the roles of heat and smoke in fire-induced water repellency. Among other things, they would like to know how long soil water repellency lasts after a fire, and gain a better understanding of the detailed processes and mechanisms through which cold smoke affects the soil.

In her free time, Natasha enjoys hiking and being outside in beautiful areas like the Desolation Wilderness in California.

DRI’s combustion chamber, pictured here, is a specialized facility that has been designed and built for the open combustion of solid fuels under controlled conditions. In this experiment, it was used to expose samples of clean sand to Jeffrey pine smoke. 

Credit: Kelsey Fitzgerald/DRI.

Gaining a thorough understanding of the process that leads to fire-induced soil water repellency is important because land managers need this information in order to accurately predict where soils are likely to be hydrophobic after a fire, Berli explained.

“We still don’t really understand the processes that lead to this fire-induced soil water repellency,” Berli said. “Depending on what we find, the measures to predict fire-induced water repellency might be different, and this can have a significant impact on how we can predict and prevent flooding or debris flows that happen after a fire.”

“This study was one big step forward, but it highlights the importance of future research on how fires affect soil, because wildfires are affecting thousands and thousands of square kilometers of land each year in the Western U.S., ” Samburova added. “Some of our future goals are to find out how exactly this soil water repellent happens, where it happens and how long it lasts.”

Additional Information:

This study was made possible with support from DRI and the National Science Foundation. Study authors included Vera Samburova, Ph.D., Rose Shillito, Ph.D. (currently with U.S. Army Corps of Engineers), Markus Berli, Ph.D., Andrey Khlystov, Ph.D., and Hans Moosmüller, Ph.D., all from DRI.

The full text of the paper, Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study, is available from Fire: https://www.mdpi.com/2571-6255/4/2/24

###

About the Desert Research Institute
The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu

Emissions from cannabis growing facilities may impact indoor and regional air quality, new research shows

Emissions from cannabis growing facilities may impact indoor and regional air quality, new research shows

RENO, Nev. (Sept. 16, 2019) – The same chemicals responsible for the pungent smell of a cannabis plant may also contribute to air pollution on a much larger scale, according to new research from the Desert Research Institute (DRI) and the Washoe County Health District (WCHD) in Reno, Nev.

In a new pilot study, DRI scientists visited four cannabis growing facilities in Nevada and California to learn about the chemicals that are emitted during the cultivation and processing of cannabis plants, and to evaluate the potential for larger-scale impacts to urban air quality.

At each facility, the team found high levels of strongly-scented airborne chemicals called biogenic volatile organic compounds (BVOCs), which are naturally produced by the cannabis plants during growth and reproduction. At facilities where cannabis oil extraction took place, researchers also found very high levels of butane, a volatile organic compound (VOC) that is used during the oil extraction process.

“The concentrations of BVOCs and butane that we measured inside of these facilities were high enough to be concerning,” explained lead author Vera Samburova, Ph.D., Associate Research Professor of atmospheric science at DRI. “In addition to being potentially hazardous to the workers inside the cannabis growing and processing facilities, these chemicals can contribute to the formation of ground-level ozone if they are released into the outside air.”

Although ozone in the upper atmosphere provides protection from UV rays, ozone at ground-level is a toxic substance that is harmful for humans to breathe. Ozone can be formed when volatile organic compounds (including those from plants, automobile, and industrial sources) combine with nitrogen oxide emissions (often from vehicles or fuel combustion) in the presence of sunlight. All of these ozone ingredients are in ample supply in Nevada’s urban areas, Samburova explained – and that impacts our air quality.

“Here in our region, unfortunately, we already exceed the national air quality standard for ground-level ozone quite a few times per year,” Samburova said. “That’s why it is so important to answer the question of whether emissions from cannabis facilities are having an added impact.”

A scientist from the Desert Research Institute measures air quality inside of a cannabis growing facility. Credit: Vera Samburova/DRI. 2019.

At one of the four cannabis growing facilities visited during this study, the team measured emission rates over time, to learn about the ozone-forming potential of each individual plant. The results show that the BVOCs emitted by each cannabis plant could trigger the formation of ground-level (bad) ozone at a rate of approximately 2.6g per plant per day. The significance of this number is yet to be determined, says Samurova, but she and her team feel strongly that their findings have raised questions that warrant further study.

“This really hasn’t been studied before,” Samburova said. “We would like to collect more data on emissions rates of plants at additional facilities. We would like to take more detailed measurements of air quality emissions outside of the facilities, and be able to calculate the actual rate of ozone formation. We are also interested in learning about the health impacts of these emissions on the people who work there.”

The cannabis facility personnel that the DRI research team interacted with during the course of the study were all extremely welcoming, helpful, and interested in doing things right, Samburova noted. Next, she and her team hope to find funding to do a larger study, so that they can provide recommendations to the growing facilities and WCHD on optimum strategies for air pollution control.

“With so much growth in this industry across Nevada and other parts of the United States, it’s becoming really important to understand the impacts to air quality,” said Mike Wolf, Permitting and Enforcement Branch Chief for the WCHD Air Quality Management Division. “When new threats emerge, our mission remains the same: Implement clean air solutions that protect the quality of life for the citizens of Reno, Sparks, and Washoe County. We will continue to work with community partners, like DRI, to accomplish the mission.”

This research was funded by the WCHD and DRI. Members of the DRI team included Vera Samburova, Ph.D., Dave Campbell, M.Sc., William R. Stockwell, Ph.D., and Andrey Khlystov, Ph.D.  To view this study online, please visit: https://www.tandfonline.com/doi/full/10.1080/10962247.2019.1654038

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit  www.dri.edu. 

The Washoe County Health District has jurisdiction over all public health matters in Reno, Sparks, and Washoe County through the policy-making Washoe County District Board of Health. The District consists of five divisions: Administrative Health Services, Air Quality Management, Community and Clinical Health Services, Environmental Health Services and Epidemiology & Public Health Preparedness. To learn more, visit https://www.washoecounty.us/health/  

OAL team at the 80th Nevada State Legislature!

OAL team at the 80th Nevada State Legislature!

Drs. Andrey Khlystov and Vera Samburova participated in the DRI Day at the NV Legislature today. They met with Senator Heidi Gansert, Assemblywomen Heidi Ann Swank and Lisa Krasner, and educated many members of NV State Legislature on dangers of flavoring compounds in e-cigarettes. Dr. Khlystov attended the recognition of DRI from the floor of the NV Senate by the State Senator Heidi Gansert.

OAL team attends SRNT Annual Meeting, February 20-23, 2019

OAL team attends SRNT Annual Meeting, February 20-23, 2019

The Organic Analytical Lab was well represented at the Society for Research on Nicotine and Tobacco 2019 Annual Meeting in San Francisco. Drs. Andrey Khlystov, Vera Samburova and Yeongkwon Son attended the meeting and Yeong presented three (!!!) posters. Please visit https://cdn.ymaws.com/www.srnt.org/resource/resmgr/SRNT19_Abstracts.pdf to see the abstracts (POS2-8, POS2-17 and POS4-47). The posters generated a lot of interest and created new opportunities for collaboration with governmental agencies and educational institutions.

OAL members present at the NPHA annual meeting

OAL members present at the NPHA annual meeting

OAL scientists Drs. Vera Samburova and Yeongkwon Son attended the 2018 Nevada Public Health Association annual conference in Las Vegas. They gave presentations on potential hazards of e-cigarette use to the broad audience of health care providers, clinicians, educators, and researchers. The talks generated a lot of interest among the attendees and initiated productive discussions. Well done, Yeong and Vera!

Local media coverage of the latest OAL publication

Local media coverage of the latest OAL publication

The latest OAL publication by Vera Samburova et al. on aldehydes in exhaled breath attracted the attention of all major local media outlets! Please click “Continue reading” to see image gallery and enable links to videos.

Reno Gazette Journal (RGJ) story: https://www.rgj.com/story/news/2018/08/20/vaping-leaves-cancer-causing-chemicals-lungs-study/1015582002/ and RGJ Facebook Live: https://www.facebook.com/RGJmedia/videos/301882897057641/

RGJ reporter interviews OAL team for FB live

RGJ reporter interviews OAL team for FB live

KTVN Channel 2 news story: http://www.ktvn.com/story/38910498/pilot-study-shows-significant-amount-of-carcinogens-stay-in-lungs-after-vaping

KTVN2 reporter interviews Dr. Vera Samburova

KTVN2 reporter interviews Dr. Vera Samburova

News 4-Fox 11 story: https://mynews4.com/news/local/dri-scientists-e-cigs-leave-dangerous-amounts-of-cancer-causing-chemicals-in-lungs

Fox 11 reporter and cameraman interviews Dr. Khlystov

Fox 11 reporter and cameraman interviews Dr. Khlystov

Significant amount of cancer-causing chemicals stays in lungs during e-cigarette use, Nevada-based researchers find

Significant amount of cancer-causing chemicals stays in lungs during e-cigarette use, Nevada-based researchers find

Above: Dr. Vera Samburova works in the organic analytical lab at Desert Research Institute, in Reno, Nev., on Tuesday, Feb. 20, 2018.
Photo by Cathleen Allison/Nevada Momentum

Reno, NV (August 15, 2018) – E-cigarettes have become increasingly popular as a smoke-free alternative to conventional tobacco cigarettes, but the health effects of “vaping” on humans have been debated in the scientific and tobacco manufacturing communities. While aldehydes—chemicals like formaldehyde that are known to cause cancer in humans—have been identified in e-cigarette emissions by numerous studies, there has been little agreement about whether such toxins exist in large enough quantities to be harmful to users.

Now, a recently published pilot study by a team of researchers from the Desert Research Institute (DRI) and the University of Nevada, Reno shows that significant amounts of cancer-causing chemicals such as formaldehyde are absorbed by the respiratory tract during a typical vaping session, underscoring the potential health risks posed by vaping.

“Until now, the only research on the respiratory uptake of aldehydes during smoking has been done on conventional cigarette users,” said Vera Samburova, Ph.D., associate research professor in DRI’s Division of Atmospheric Sciences and lead author of the study. “Little is known about this process for e-cigarette use, and understanding the unique risks vaping poses to users is critical in determining toxicological significance.”

Samburova and fellow DRI research professor Andrey Khlystov, Ph.D., have been investigating the health risks associated with e-cigarettes for several years. In 2016, they published findings confirming that dangerous levels of aldehydes are formed during the chemical breakdown of flavored liquids in e-cigarettes and emitted in e-cigarette vapors.

In this study, Samburova and her team estimated e-cigarette users’ exposure to these hazardous chemicals by analyzing the breath of twelve users before and after vaping sessions using a method she and Khlystov have developed over the course of their work together. Through this process, they determined how much the concentration of aldehydes in the breath increased. Researchers then subtracted the concentration of chemicals in exhaled breath from the amount found in the vapors that come directly from the e-cigarette.

The difference, Samburova explains, is absorbed into the user’s lungs.

E-cigarettes in the Organic Analytical Lab

E-cigarettes in the Organic Analytical Lab at DRI.

“We found that the average concentration of aldehydes in the breath after vaping sessions was about ten and a half times higher than before vaping,” Samburova said. “Beyond that, we saw that the concentration of chemicals like formaldehyde in the breath after vaping was hundreds of times lower than what is found in the direct e-cigarette vapors, which suggests that a significant amount is being retained in the user’s respiratory tract.”

The research team took care to ensure that the test conditions of the study mirrored real-life vaping sessions as much as possible. Most participants used their own e-cigarette devices during the study, used e-liquid flavors that were familiar to them, and inhaled for the amount of time that they ordinarily would, which allowed the research team to understand how e-cigarettes are typically used by regular users. Because they tested “normal” vaping experiences, researchers confirmed that the high concentrations of aldehydes found in other studies aren’t limited to laboratory conditions.

“Our new pilot study underlines the potential health risk associated with the aldehydes generated by e-cigarettes,” said Samburova. “In the future, e-cigarette aldehyde exposure absolutely needs to be studied with a larger set of participants.”

The study, “Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results,” was published on August 7th in the journal Toxics and is available here: https://www.mdpi.com/2305-6304/6/3/46/htm#app1-toxics-06-00046. DOI: 10.3390/toxics6030046

This research was independently funded by DRI and conducted in DRI’s Organic Analytical Laboratory located in Reno, Nevada. For more information about the Organic Analytical Lab, visit: https://www.dri.edu/oal-lab.

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit  www.dri.edu.

NSHE Rising Researcher Award presentation

NSHE Rising Researcher Award presentation

DRI President Dr. Kristen Averyt presented Dr. Vera Sumburova with the NSHE Rising Researcher Award during a ceremony at the DRI’s Las Vegas location on June 21, 2018.

Board of Regents awards Dr. Vera Samburova 2018 Rising Researcher Award

Board of Regents awards Dr. Vera Samburova 2018 Rising Researcher Award

The Nevada System of Higher Education (NSHE) Board of Regents this week awarded Vera Samburova, Ph.D., an assistant research professor of atmospheric chemistry and air pollution at DRI, with its annual Rising Researcher Award.

She was recognized for her early-career accomplishments and leading a new and exciting area of research at DRI looking at inhalation and indoor air quality related health effects. The honor is given annually to one NSHE faculty member from DRI, UNR, and UNLV.

Reno, Nev.  (Thursday, March 1, 2018) – The Nevada System of Higher Education (NSHE) Board of Regents this week awarded Vera Samburova, Ph.D., an assistant research professor of atmospheric chemistry and air pollution at DRI, with its annual Rising Researcher Award.

She was recognized for her early-career accomplishments and leading a new and exciting area of research at DRI looking at inhalation and indoor air quality related health effects. The honor is given annually to one NSHE faculty member from DRI, UNR, and UNLV.

As a member of the DRI’s Organic Analysis Laboratory, Samburova’s research focuses on the collection and analysis of atmospheric organic species, characterization and quantification of organic emissions from various sources like biomass burning and fossil fuels.

She recently initiated an internally funded research project investigating the emissions from e-cigarettes. Her research team found that the aerosols (commonly called vapors) produced by flavored e-cigarettes liquids contain dangerous levels of hazardous chemicals known to cause cancer in humans. Their research was published in Environmental Science & Technology (ES&T), a journal of the American Chemical Society.

“The health impacts of e-cigarettes are still widely unknown and not researched,” said Samburova. “I am incredibly honored to be recognized for this important work and everything that our team at DRI has done to advance this important and emerging field of research.”

Samburova has authored a total of 35 peer-reviewed publications, 20 since joining DRI, and seven of which she was the first author. She has served as a principal investigator, and co-principal investigator, and a key personnel/scientist for 15 projects that have received over $2 million in external research funding.

She is also actively involved in the Atmospheric Sciences Graduate Program at the University of Nevada, Reno where she has taught classes every year starting in 2008 and has been the Deputy Director of that program for the last five years.

Samburova received her Ph.D. in Environmental Organic Chemistry from the Swiss Federal Institute of Technology, Zurich in 2007, after which she was recruited at Desert Research Institute as a Post Doc and subsequently transitioned to an Assistant Research Professor.

Significant amount of cancer-causing chemicals stays in lungs during e-cigarette use, Nevada-based researchers find

Board of Regents award DRI air pollution expert 2018 Rising Researcher Award

Dr. Vera Samburova works in the organic analytical lab at Desert Research Institute, in Reno, Nev., on Tuesday, Feb. 20, 2018. Photo by Cathleen Allison/Nevada Momentum.


 

Reno, Nev.  (Thursday, March 1, 2018) – The Nevada System of Higher Education (NSHE) Board of Regents this week awarded Vera Samburova, Ph.D., an assistant research professor of atmospheric chemistry and air pollution at DRI, with its annual Rising Researcher Award.

She was recognized for her early-career accomplishments and leading a new and exciting area of research at DRI looking at inhalation and indoor air quality related health effects. The honor is given annually to one NSHE faculty member from DRI, UNR, and UNLV.

As a member of the DRI’s Organic Analysis Laboratory, Samburova’s research focuses on the collection and analysis of atmospheric organic species, characterization and quantification of organic emissions from various sources like biomass burning and fossil fuels.

She recently initiated an internally funded research project investigating the emissions from e- cigarettes. Her research team found that the aerosols (commonly called vapors) produced by flavored e-cigarettes liquids contain dangerous levels of hazardous chemicals known to cause cancer in humans. Their research was published in Environmental Science & Technology (ES&T), a journal of the American Chemical Society.

“The health impacts of e-cigarettes are still widely unknown and not researched,” said Samburova. “I am incredibly honored to be recognized for this important work and everything that our team at DRI has done to advance this important and emerging field of research.”

Samburova has authored a total of 35 peer reviewed publications, 20 since joining DRI, and seven of which she was the first author. She has served as a principal investigator, and co-principal investigator, and a key personnel/scientist for 15 projects that have received over $2 million in external research funding.

She is also actively involved in the Atmospheric Sciences Graduate Program at the University of Nevada, Reno where she has taught classes every year starting in 2008 and has been the Deputy Director of that program for the last five years.

Samburova received her Ph.D. in Environmental Organic Chemistry from the Swiss Federal Institute of Technology, Zurich in 2007, after which she was recruited at Desert Research Institute as a Post Doc and subsequently transitioned to an Assistant Research Professor.

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Dr. Andrey Khlystov wins Society for Research on Nicotine & Tobacco New Investigator Award

Dr. Andrey Khlystov wins Society for Research on Nicotine & Tobacco New Investigator Award

Dr. Andrey Khlystov has been named a “2018 New Investigator Award Winner for Best Abstract” by the Society for Research on Nicotine & Tobacco for his presentation “The Effect of Puff Topography and Power Settings on Aldehyde and Carbon Monoxide in E-cigarette Aerosols”. The award was presented at the Society’s annual meeting in Baltimore, MD. Dr. Khlystov is the Director of the Organic Analytical Laboratory and a Research Professor of Atmospheric Chemistry at DRI. Two other OAL members presented posters at the SRNT meeting: Dr. Vera Samburova (“Carbonyl Compounds in Exhaled E-cigarette Aerosols”) and Dr. Yeongkwon Son (“Indoor Air Quality in Electronic Cigarette Vape Shops”).