Population health study “Healthy Nevada Project” goes statewide, adding 25,000 participants

Las Vegas, Nev. (May 8, 2019) – The Healthy Nevada Project, a first-of-its-kind, community-based population health study combining genetic, clinical, environmental and social data, is expanding enrollment to Las Vegas. The Project aspires not only to offer genetic testing to every Nevadan interested in learning more about their health and genetic profile but ultimately, to develop and expand the Project for communities across the United States to drive positive health outcomes nationwide.

Adding 25,000 Study Volunteers in Southern Nevada

The Healthy Nevada Project is announcing a statewide expansion – opening 25,000 testing slots in Las Vegas in a collaboration with University Medical Center of Southern Nevada (UMC), which serves as the host-site for Las Vegas.

With UMC welcoming the study to southern Nevada, the Healthy Nevada Project will offer no-cost genetic testing through a simple spit sample to 25,000 study volunteers. Study volunteers will take Helix’s clinical-grade DNA saliva test and will receive their ancestry and traits, at no cost, through the My Healthy Nevada Traits app. Participants will then be given a chance to answer a follow-up health survey from Renown Institute for Health Innovation (Renown IHI), and upon survey completion, will be entered to win an iPhone.

In addition, study participants can agree to be notified about genetic test results that could impact their health, and which could be used to improve their medical care. This return of clinical results, plus genetic counseling and other genetic services as appropriate, will be provided by Genome Medical, the leading network of clinical genetics specialists.

“This is an incredible opportunity to learn more about our genetics and improve health throughout the Silver State,” said Mason VanHouweling, CEO of UMC. “In support of UMC’s commitment to promoting innovation in health care and building a better future for our home state, we embrace the opportunity to collaborate with Renown Health while hosting the Healthy Nevada Project in southern Nevada.”

Healthy Nevada Project’s Evolution & Ongoing Expansion

With more than 35,000 study participants enrolled in just over two years, the Healthy Nevada Project has become the fastest-enrolling genetic study in the country. The Project was created by Renown IHI – a collaboration between Reno, Nev.-based not-for-profit health network, Renown Health, and the world leader in environmental data, Desert Research Institute (DRI). Leveraging Renown’s forward-thinking approach to community health care and DRI’s data analytics and environmental expertise, Renown IHI has grown its capabilities to lead a larger, more complex research study of significance that will analyze and model public health risks in Nevada and serve as a national model for future population health studies working to improve overall health through clinical care integration.

During the Project’s pilot launch in September 2016, more than 10,000 community members signed up for DNA testing in just 48 hours. In March 2018, phase two offered full genomic sequencing through a simple spit test from partner, Helix, to northern Nevadans. In October 2018, the Project announced the return of clinical results for study participants, notifying them of their risk for CDC Tier 1 conditions including familial hypercholesterolemia, BRCA positive 1 and 2, and Lynch syndrome, a precursor to colon cancer.  These conditions affect more than one percent of the population and are inherited so they impact family members as well. Now, the Project announced its next phase – expanding enrollment to 25,000 people in southern Nevada through a collaboration with UMC.

Serving as a National Model

This expansion to Las Vegas truly makes this the “Healthy Nevada Project” with a statewide impact making Nevada the only state in the U.S. to offer such a program.

“Nevada was ripe to advance population health goals because, sadly, our state ranks near the bottom in health outcomes. The Healthy Nevada Project is working to change that,” said Anthony Slonim, M.D., DrPH, FACHE, president and CEO of Renown Health and president of Renown IHI. “Our researchers are working on a number of clinical programs and scientific studies to determine why in Washoe County, the county in which Renown Health is located, Nevada’s age-adjusted death rates for heart disease, cancer and chronic lower respiratory disease are 33 percent higher than the national rate. Imagine if we can gather more data like this on a national scale and use it to change the future of health and health care? That is what the Healthy USA Project is looking to do in the years to come.”

“The Healthy Nevada Project is committed to providing study participants clinically actionable data that will help improve their health,” said Joseph Grzymski, Ph.D., associate research professor at DRI, principal investigator of the Healthy Nevada Project and chief scientific officer for Renown Health. “We are providing this information at the individual level so study volunteers can make lifesaving changes to reduce their risk. We’re also doing it on the community level to develop leading-edge research on health determinants for entire neighborhoods, states and eventually, the country.”

Expanding to Become the Healthy USA Project

The accelerated speed of the Project is made possible thanks to the ever-decreasing cost of sequencing. Today, Helix is able to sequence an entire exome – which allows reporting on most actionable genomic knowledge – for a fraction of what it would have cost just 10 years ago. Additionally, advances in digital health mean Helix and Project researchers can capture unprecedented amounts of health data digitally, making significant contributions to advancing precision health. The partnership has managed to remove the traditional barriers of population health studies, including the difficulty in recruiting participants, establishing quality high-throughput lab systems, and scaling interpretation and return of results. This development will be key as other health systems around the country join the Project.

“We are thrilled to see the constant, fast-paced evolution of this Project with Renown IHI,” said Justin Kao, Co-Founder of Helix. “In less than a year, we have sequenced the DNA of thousands of study participants and are now preparing to offer this incredible study in other states. Combining environmental, clinical, social and genetic data allows us to discover risk factors within communities and help people take action to live longer, healthier lives. That’s what makes the next step of the Healthy USA Project so exciting for all of us.”

Northern and southern Nevadans over age 18 who are interested in taking part are encouraged to learn more and sign up for the study at HealthyNV.org.

###

About UMC

UMC offers the highest level of care in Nevada, providing a wide range of exclusive and specialized health care services to community members and visitors. UMC is home to Nevada’s only Level I Trauma Center, only Designated Pediatric Trauma Center, only Burn Care Center and only Center for Transplantation. Children’s Hospital of Nevada at UMC serves as the state’s only hospital to be recognized and accepted as an associate member of the Children’s Hospital Association. Offering highly skilled physicians, nurses and staff members supported by the latest, cutting-edge technology, UMC and Children’s Hospital of Nevada continue to build upon their shared reputation for providing Nevada’s highest level of care. In support of its mission to serve as the premier academic health center, UMC is the anchor partner for the UNLV School of Medicine. For more information, please visit www.umcsn.com and www.chnv.org.

Renown Institute for Health Innovation is a collaboration between Renown Health – a locally governed and locally owned, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California; and the Desert Research Institute – a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. Renown IHI research teams are focused on integrating personal healthcare and environmental data with socioeconomic determinants to help Nevada address some of its most complex environmental health problems; while simultaneously expanding the state’s access to leading-edge clinical trials and fostering new connections with biotechnology and pharmaceutical companies. Learn more at https://healthynv.org/.

Helix is a genomics company with a simple but powerful mission: to empower every person to improve their life through DNA. Our affordable, turnkey population health solution enables institutions to quickly scale projects that engage communities and accelerate research and discovery, ultimately allowing every person to benefit from the power of genomics. We’ve also created the first marketplace for DNA-powered products where people can explore diverse and uniquely personalized products developed by high-quality partners, providing powerful tools to increase engagement and speed the pace of population-scale genomics. Helix is headquartered in the San Francisco Bay Area, has an office in Denver, Colorado and operates a CLIA-certified and CAP-accredited next-generation sequencing lab in San Diego powered by Illumina (NASDAQ: ILMN) NGS technology. Helix was created in 2015. Learn more at www.helix.com.

Helix, the Helix logo and Exome+ are trademarks of Helix Opco, LLC. All other trademarks referenced herein are the property of their respective owners.

Preserving Nevada’s Lost City using drones

Preserving Nevada’s Lost City using drones

Photo: Ruins of adobe houses, Lost City of Nevada. Credit: Special Collections, University of Nevada, Reno Libraries.


 

Nevada’s “Lost City,” located northeast of Las Vegas on a terrace above the Muddy River, has been lost twice before – first abandoned by the native people who built it, then later flooded beneath the waters of Lake Mead – but a team of archaeologists from the Desert Research Institute’s Las Vegas campus hopes to ensure that it isn’t lost a third time.

This summer, DRI researchers JD Lancaster, Tatianna Menocal, and Megan Stueve plan to use unmanned aircraft system (UAS) or drone technology to create high-resolution 3-D maps of the Lost City archaeological site, which consists of about 46 adobe structures that date back more than 1,000 years. Working with representatives from the National Park Service, the team will then use these detailed maps of the structures and topography to devise best management practices for the continued preservation of the site.

“The structures are set on old river terraces and lake deposits that are really susceptible to erosion, and as the level of Lake Mead has dropped, the erosion seems to have accelerated quite a bit,” said Lancaster, Assistant Research Scientist of Archaeology at DRI. “Our goal with this project is to try to figure out where erosion is particularly bad and to try some different techniques to help control that erosion.”

Researchers holding drones.

During summer 2019, DRI researchers JD Lancaster, Megan Stueve and Tatianna Menocal plan to use unmanned aircraft system (UAS) or drone technology to create high-resolution 3-D maps of the Lost City archaeological site.

 

Lost in time

Lost City, also known as the Pueblo Grande de Nevada, was home to a small community of people of the Puebloan culture from about 800 A.D. to 1300 A.D. Here, they lived along the banks of the Muddy River, farming crops such as corn, squash, cotton and beans, and supplementing agriculture with wild and hunted foods.

No one knows exactly why Lost City was abandoned by its original inhabitants, but once the remains were discovered in the 1920s, they were mapped by archaeologists. After the construction of the Hoover Dam in 1935, the rising shoreline of Lake Mead became a threat the site.

“The area was inundated by the rising waters of Lake Mead after the construction of the Hoover Dam. Original researchers and the Civilian Conservation Corps were under a time crunch to get all the data they could while the Dam was being constructed, all the while knowing it would be lost after inundation,” said Stueve, Staff Research Scientist of Archaeology. “Fortunately, only half the site was inundated by high water levels and as the water receded from years of drought, the site was fully exposed once again and available to study.”

The ruins were studied again in more detail in 1979 through the 1990s, by which time extensive erosion had already damaged a number of the structures.

“One thing that has always been noted in the archaeological studies is the level of erosion in this area,” said Menocal, Assistant Research Scientist of Archaeology. “Entire landforms or portions of the landforms have been eroded away, so portions of the site are no longer there. In some places, entire houses are gone.”

Today, Lost City is listed in the National Register of Historic Places and managed by the National Park Service as part of Lake Mead National Recreation Area. Lancaster, Menocal, and Stueve approached NPS with an idea for a partnership to aid in preservation of the site. When an opportunity to fund the project through DRI’s Lander Endowment became available they realized the partnership was a possibility.

“We were looking for ways that we could branch out and impact the local community and the local resources around us a bit more,” Lancaster said. “We have a lot of capabilities at DRI; it’s the type of place that has the infrastructure for us to do high quality and meaningful environmental science.”

Ruins of houses at Lost City, Nevada.

A photograph of an unidentified person sitting in a group of restored pueblo homes at Lost City located near Overton, Nevada, circa 1930s-40s. Photo from University of Nevada, Las Vegas Special Collections.

A plan for preservation

To help protect Lost City from further damage, the DRI team plans to use UAS technology to create high-resolution maps of the area, through a process called photogrammetry.

“The UAS will fly around and take a series of several hundred photos of the area of interest, and we’ll use that to essentially build a 3-D model of the surface,” Lancaster explained.

They will use the maps to identify areas where erosion has occurred in the past and present, as well as areas where they expect erosion to occur in the future. During the summer of 2020, before the monsoon season hits, the DRI team will work with representatives from NPS to design effective treatments for the erosion problem. They plan to monitor the results of their efforts using UAS photogrammetry as the monsoon season progresses.

“The erosion is focused in these deep gullies that have formed in soft sediments, and these gullies are causing damage to the site as they expand and run into each other,” Lancaster said. “So, we’re planning a paired study. We’ll install an erosion treatment in one gully, and the other gully in that pair will not get a treatment. We’re essentially testing the effectiveness of erosion treatments approved by NPS management.”

The team is still looking for funding for another component of the project, which would utilize a thermal sensor on the UAS to detect structures or stone objects that are buried beneath the land surface.

“Out at Lost City, there are probably still structures that are buried beneath sediments, that you can’t actually see,” Lancaster said. “If we could discover where they were, and discover where gullies or erosion might expose them and start to damage them in the future, we could actually prevent them from being damaged or exposed in the first place. That’s one really exciting aspect of the project that we’d love to have the opportunity to test.”

Researchers with drones

DRI researchers JD Lancaster, Tatianna Menocal and Megan Stueve work with drones at DRI’s Las Vegas Campus.

 


LEARN MORE

About Pueblo Grande De Nevada (Lost City), from Online Nevada: http://www.onlinenevada.org/articles/pueblo-grande-de-nevada-lost-city

About Lost City Archaeology, from Online Nevada: http://www.onlinenevada.org/articles/lost-city-archaeology

About Pueblo Grande De Nevada (Lost City) from the National Park Service: https://npgallery.nps.gov/AssetDetail/6b5182e4-c08c-4a6f-a296-e94058ebd6e1

Meet Josh Sackett, Ph.D.

Meet Josh Sackett, Ph.D.

Josh Sackett, Ph.D., is a postdoctoral researcher with the Division of Hydrologic Sciences at the Desert Research Institute in Las Vegas. Josh specializes in the study of microbes that inhabit Earth’s deep subsurface environments. He grew up in southwestern Colorado, and holds bachelor’s and master’s degrees in Biology from University of Colorado Denver, and a Ph.D. in Biological Sciences from University of Nevada, Las Vegas. Josh has been a member of the DRI community since 2014, when he moved to Las Vegas for a position working in DRI’s Environmental Microbiology Laboratory. In his free time, he enjoys hiking and exploring Mount Charleston and other natural areas around Las Vegas.  


 

What do you do here at DRI? 

I am a microbial ecologist and postdoctoral researcher with the Environmental Microbiology Lab at DRI. Some of my graduate work took place out in Amargosa Valley, Nevada, where we were looking for differences in the microbial community between Devils Hole and the Ash Meadows Fish Conservation Facility. We learned that the lack of cyanobacteria in the fish conservation facility may be impacting the survival of the Devils Hole Pupfish, which is critically endangered.

Right now, I am studying microbes such as bacteria and archaea that inhabit Earth’s deep subsurface fluids, which we access primarily through deep wells and mine shafts. We’re looking at the genetic material of these microbes using a technique called single-cell genomics where we isolate individual microbes, sequence their genomes, and learn about their potential role in their environment based on what genes are present.

What do you hope to learn about these deep subsurface organisms? 

We’re interested in how organisms live life independent of sunlight. These organisms are usually anaerobic (able to live without oxygen, some requiring the complete absence of oxygen), and they live a different lifestyle than most organisms that you think of. Humans, for example, we breathe oxygen and we metabolize organic carbon; these organisms don’t necessarily do that. So, learning about how these organisms live in the absence of oxygen, sunlight, or in environments where organic carbon is scarce gives us insight into potential for life on other planets where oxygen and dissolved organic carbon are likely limiting or not present at all.

Our research has potential for biotechnological applications as well. Sometimes, organisms that live in unique or austere environments are capable of degrading certain compounds, such as contaminants, or produce enzymes that are of interest to the scientific community.

Josh Sackett, Ph.D.

Josh Sackett, Ph.D., is a postdoctoral researcher with the Division of Hydrologic Sciences at DRI’s campus in Las Vegas.

Where does your research take place? 

One of our study sites, called BLM1, is located in Inyo County, near Amargosa Valley, Nevada. It’s a 2,500-foot deep well, which really isn’t all that deep. However, the earth’s crust is actually really thin in this area, so you don’t have to drill very deep to access hot fluids. Because of this, BLM1 serves as a stellar field site for investigating life in the subsurface. We also have a study site located along the Juan De Fuca Ridge, off the coast of Washington State, and we plan to look at microbial activity in sediments and fluids from that environment.

How did you end up here at DRI? 

I was born and raised in southwest Colorado, in a little town near Durango. I moved to Denver for my bachelor’s and master’s degrees. After that, I was searching for a laboratory to do my Ph.D. research in, and came across Duane Moser’s lab. I was interested in the plethora of projects he had going on, and I thought I could gain a lot of research experience and exposure to many different topics in his lab.

Initially, I wanted to be a physician. However, I caught the microbiology bug — no pun intended —  as an undergraduate student, and I’ve been hooked ever since. I really became interested in it because I’m interested in how microbes influence biogeochemical cycling, or how microbes contribute to earth’s processes, on a global scale.

Nevada Higher Education Institutions Partner with Tesla in New Robotics Academy For Teachers

Nevada Higher Education Institutions Partner with Tesla in New Robotics Academy For Teachers

Students assemble a basic electric motor at Gigafactory 1 with Tesla volunteers during Introduce a Girl to Engineering Day 2019. Credit: Tesla


New program to offer K-12 teacher trainings developed by DRI, UNR and UNLV

 

Reno, Nev. (April 16, 2019) –  The Desert Research Institute (DRI), University of Nevada, Las Vegas (UNLV) and University of Nevada, Reno (UNR) are partnering with Tesla to help Nevada’s teachers go from curious to confident in coaching robotics programs.

The Robotics Academy of Nevada – a new statewide professional development program funded by Tesla’s K-12 Education Investment Fund – will launch this summer, facilitated by DRI’s PreK-12 STEM education and outreach program, Science Alive, in partnership with the Colleges of Engineering at Nevada’s research universities.

The Academy is comprised of two week-long teacher trainings designed to help 200 middle and high school teachers to coach robotics programs at their schools, with mentor support throughout the year. Trainings will be held on the universities’ campuses and will be taught by university faculty from the Departments of Engineering and Education, with assistance from college students.

“We are very excited to be given the opportunity to help create this new Academy to directly support Nevada’s teachers,” said Amelia Gulling, Science Alive STEM Education Director at DRI. “The primary highlight of this statewide initiative has been the collaborative partnerships that have been developed with our fellow NSHE institutions, robotics competition programs, and school districts.”

The Academy will introduce engineering and robotics content into the existing curriculum across Nevada, including an introduction to engineering processes, careers and methodologies for integration. Additional content will specifically address the implementation of competitive robotics and computer programming and cyber-literacy. Teachers will be also introduced to other robotics coaches and a network of mentors and others, both inside and outside of the universities, who they can work with year-round.

DRI’s Science Alive program is working with FIRST Nevada and the Robotics Education and Competition Foundation (REC Foundation) in a shared vision to help bring a quality robotics program to every school in Nevada over the next four years.

“The most widely-utilized system for encouraging students to participate in robotics-related activities are competition leagues, FIRST Robotics leagues for example,” said David Feil-Seifer, project lead for the University of Nevada, Reno and assistant professor of computer science and engineering. “We will organize a Northern Nevada Robotics Competition Workshop, which will be open to stakeholders of such a program, such as league administrators, school personnel, parents, University personnel and members of the private innovation community as a hands-on zero-to-competition experience.”

“Tesla and DRI understand that Nevada needs a highly skilled, STEM-ready workforce,” said Brendan O’Toole, chair of UNLV’s mechanical engineering department in the College of Engineering and UNLV lead on the project. “As a longtime FIRST Robotics mentor and coach, I’ve experienced first-hand how robotics programs prepare students to solve challenging problems and strengthen the school-to-STEM-career pipeline by inspiring students to explore science, engineering and technology options.”

The funding of the Robotics Academy of Nevada is part of Tesla’s $37.5 million investment in K-12 education in Nevada aimed at programs that encourage students of all backgrounds to consider a career in STEM or sustainability. Tesla began rolling out the education investment in 2018 and will carry it out over five years.

Trainings will be completely free to educators, and all educators will receive a stipend and continuing education credits. Participants who are non-local will also have accommodations covered.

Trainings will be hosted in both Las Vegas and Reno early this summer:

Las Vegas: May 28-June 1 at UNLV

Reno: June 17-21 at UNR

Recruiting for participation in the Robotics Academy of Nevada is open now, and interested teachers can apply at https://sciencealive.dri.edu/robotics

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI is one of eight institutions in the Nevada System of Higher Education.

University of Nevada, Las Vegas is a doctoral-degree-granting institution of more than 30,000 students and 3,500 faculty and staff that is recognized among the top three percent of the nation’s research institutions – those with “very high research activity” – by the Carnegie Classification of Institutions of Higher Education. UNLV offers a broad range of respected academic programs and is committed to recruiting and retaining top students and faculty, educating the region’s diversifying population and workforce, driving economic activity, and creating an academic health center for Southern Nevada. Learn more at unlv.edu.

The University of Nevada, Reno is a public research university committed to the promise of a future powered by knowledge. Founded in 1874 as Nevada’s land-grant university, the University serves nearly 22,000 students. The University is a comprehensive doctoral university, classified as an R1 institution with very high research activity by the Carnegie Classification of Institutions of Higher Education. More than $800 million has been invested campus-wide in advanced laboratories, residence halls and facilities since 2009. It is home to the University of Nevada, Reno School of Medicine and Wolf Pack Athletics, as well as statewide outreach programs including University of Nevada Cooperative Extension, Nevada Bureau of Mines and Geology, Small Business Development Center and Nevada Seismological Laboratory. The University is part of the Nevada System of Higher Education. Through a commitment to student success, world-improving research and outreach benefiting Nevada’s communities and businesses, the University has impact across the state and around the world. For more information, visit www.unr.edu.

Media Contacts:

Justin Broglio
Desert Research Institute
justin.broglio@dri.edu
(775) 673-7610

Mike Wolterbeek
Communications Officer
University of Nevada, Reno
mwolterbeek@unr.edu
(775) 784-4547

Tony Allen
Director of Media Relations
University of Nevada, Las Vegas
tony.allen@unlv.edu
(702) 895-3102

DRI researchers successfully remove harmful hormones from Las Vegas wastewater using green algae

DRI researchers successfully remove harmful hormones from Las Vegas wastewater using green algae

Xuelian Bai, Ph.D., Assistant Research Professor of Environmental Sciences, works with an algae sample in the Environmental Engineering Laboratory at the Desert Research Institute in Las Vegas. Credit: Sachiko Sueki.


 

LAS VEGAS, Nev. (April 8, 2019) – A common species of freshwater green algae is capable of removing certain endocrine disrupting chemicals (EDCs) from wastewater, according to new research from the Desert Research Institute (DRI) in Las Vegas.

EDCs are natural hormones and can also be found in many plastics and pharmaceuticals. They are known to be harmful to wildlife, and to humans in large concentrations, resulting in negative health effects such as lowered fertility and increased incidence of certain cancers. They have been found in trace amounts (parts per trillion to parts per billion) in treated wastewater, and also have been detected in water samples collected from Lake Mead.

In a new study published in the journal Environmental Pollution, DRI researchers Xuelian Bai, Ph.D., and Kumud Acharya, Ph.D., explore the potential for use of a species of freshwater green algae called Nannochloris to remove EDCs from treated wastewater.

“This type of algae is very commonly found in any freshwater ecosystem around the world, but its potential for use in wastewater treatment hadn’t been studied extensively,” explained Bai, lead author and Assistant Research Professor of environmental sciences with the Division of Hydrologic Sciences at DRI. “We wanted to explore whether this species might be a good candidate for use in an algal pond or constructed wetland to help remove wastewater contaminants.”

Samples of Nannochloris grow in the Environmental Engineering Laboratory at DRI. This species of green algae was found to be capable of removing certain types of endocrine disrupting chemicals from treated wastewater. Credit: Xuelian Bai/DRI.

Samples of Nannochloris grow in the Environmental Engineering Laboratory at DRI. This species of green algae was found to be capable of removing certain types of endocrine disrupting chemicals from treated wastewater. Credit: Xuelian Bai/DRI.

During a seven-day laboratory experiment, the researchers grew Nannochloris algal cultures in two types of treated wastewater effluents collected from the Clark County Water Reclamation District in Las Vegas, and measured changes in the concentration of seven common EDCs.

In wastewater samples that had been treated using an ultrafiltration technique, the researchers found that the algae grew rapidly and significantly improved the removal rate of three EDCs (17β-estradiol, 17α-ethinylestradiol and salicylic acid), with approximately 60 percent of each contaminant removed over the course of seven days. In wastewater that had been treated using ozonation, the algae did not grow as well and had no significant impact on EDC concentrations.

One of the EDCs examined in the study, triclosan, disappeared completely from the ultrafiltration water after seven days, and only 38 percent remained in the ozonation water after seven days – but this happened regardless of the presence of algae, and was attributed to breakdown by photolysis (exposure to light).

“Use of algae for removing heavy metals and other inorganic contaminants have been extensively studied in the past, but for removing organic pollutants has just started,” said Acharya, Interim Vice President for Research and Executive Director of Hydrologic Sciences at DRI. “Our research shows both some of the potential and also some of the limitations for using Nannochloris to remove EDCs from wastewater.”

Although these tests took place under laboratory conditions, a previous study by Bai and Acharya that published in November 2018 in the journal Environmental Science and Pollution Research examined the impacts of these same seven EDCs on quagga mussels (Dreissena bugensis) collected from Lake Mead. Their results showed that several of the EDCs (testosterone, bisphenol A, triclosan, and salicylic acid) were accumulating in the body tissues of the mussels.

Researcher examines a sample of quagga mussels collected from Lake Mead. A recent study by Bai and Acharya found that endocrine disrupting chemicals are accumulating in the body tissues of these mussels. Credit: Xuelian Bai.

Researcher examines a sample of quagga mussels collected from Lake Mead. A recent study by Bai and Acharya found that endocrine disrupting chemicals are accumulating in the body tissues of these mussels. Credit: Xuelian Bai.

“Algae sit at the base of the food web, thereby providing food for organisms in higher trophic levels such as quagga mussels and other zooplantkons,” Bai said. “Our study clearly shows that there is potential for these contaminants to biomagnify, or build up at higher levels of the food chain in the aquatic ecosystem.”

Bai is now working on a new study looking for antibiotic resistance in genes collected from the Las Vegas Wash, as well as a study of microplastics in the Las Vegas Wash and Lake Mead. Although Las Vegas’s treated wastewater meets Clean Water Act standards, Bai hopes that her research will draw public attention to the fact that treated wastewater is not 100 percent clean, and will also be helpful to utility managers as they develop new ways to remove untreated contaminants from wastewater prior to release.

“Most wastewater treatment plants are not designed to remove these unregulated contaminants in lower concentrations, but we know they may cause health effects to aquatic species and even humans, in large concentrations,” Bai said. “This is concerning in places where wastewater is recycled for use in agriculture or released back into drinking water sources.”

Bai’s research was funded by the Desert Research Institute Maki Endowment, the U.S. Geological Survey, and the Nevada Water Resources Research Institute. The studies mentioned in this release are available from Environmental Pollution and Environmental Science and Pollution Research journals:

Bai, X. and Kumud Acharya. 2019. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environmental Pollution. 247: 534-540. Available: https://www.sciencedirect.com/science/article/pii/S0269749118347894

Bai, X. and Kumud Acharya. 2018. Uptake of endocrine-disrupting chemicals by quagga mussels (Dreissena bugensis) in an urban-impacted aquatic ecosystem. Environmental Science and Pollution Research. 26: 250-258. Available: https://link.springer.com/article/10.1007/s11356-018-3320-4

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as one of eight institutions in the Nevada System of Higher Education.

Meet Erick Bandala, Ph.D.

Meet Erick Bandala, Ph.D.

Erick Bandala, Ph.D., is an assistant research professor of environmental science with the Division of Hydrologic Sciences at the Desert Research Institute in Las Vegas. Erick specializes in research related to water quality and water treatment, including the use of nanomaterials in developing new water treatment technologies. He is originally from Mexico, and holds a bachelor’s degree in chemical engineering from Veracruz State University, a master’s degree in organic chemistry from Morelos State University, and a Ph.D. in Engineering from the National Autonomous University of Mexico. Erick has been a member of the DRI community since 2016, when he moved to Las Vegas to begin his current job. In his free time, Erick says that he enjoys doing nothing – a passion that is not shared by his wife of nearly 30 years, who enjoys doing many things.


DRI: What do you do here at DRI?

EB: My work here is to develop advanced technologies for water treatment, such as processes that can deal with the pollutants in the water that are not removed by conventional water treatment methods.

DRI: We understand that a lot of your work involves nanomaterials. What are nanomaterials, and how do you use them in your research?

EB: Nanomaterials are materials that are so small that if you compare the size of one of these materials with a basketball, it’s like comparing the size of the basketball with the size of the earth. These nano-sized materials have applications in many different fields.

In my case, what I’m doing with the nanomaterials is using them to promote reactions in the water that can produce chemical species capable of destroying contaminants. Not only to remove the contaminants, but to destroy them from the water.

Erick Bandala, Ph.D. at work in DRI's Environmental Engineering Lab. Credit: Dave Becker, Nevada Momentum.

Erick Bandala, Ph.D. at work in DRI’s Environmental Engineering Lab. Credit: Dave Becker, Nevada Momentum.

 

DRI: What type of contaminants do you hope to remove? Can you tell us about one of your projects? 

EB: Right now, we are trying to get nanoparticles made of something called zerovalent iron, which is iron with no charge on it. We are planning to use this to remove antibiotics from water. As you know, we all use antibiotics every now and then. And when you use them, the antibiotics get into your body and you will probably only use about 15 percent of the total amount that is present. Whatever remains is discarded with your feces or urine into the wastewater.

Once the wastewater arrives at the water treatment plant, the conventional water treatment processes will probably not be able to remove the antibiotic. So, the antibiotic passes through the wastewater treatment system and keeps going with the treated effluent. In the case of Las Vegas for example, it goes back to Lake Mead. This is a problem, because we are learning now that bacteria can become resistant to antibiotics just by exposure – and when bacteria in the environment become resistant to the antibiotics, there is no way for people to treat infections.

So, in our work, we hope to use nanoparticles to destroy the contaminants in the wastewater. At the moment we are just running some trials in the lab, but we eventually hope to run the experiment at pilot level to see if we can treat wastewater coming back from plants to the lake, and ensure that we will not have these contaminants going back to our environment.

Another part of my research is on how to use solar energy to remove contaminants from water. This way you can save some money by using an energy source that is common in Nevada, widely available. We have a lot of sunshine here.

Information about nanomaterials from DRI's Environmental Engineering Lab. Credit: Dave Becker, Nevada Momentum.

Information about nanomaterials from DRI’s Environmental Engineering Lab. Credit: Dave Becker, Nevada Momentum.

 

DRI: How did you become interested in working on water treatment and water quality?

EB: My very first job was working in a research institute in Mexico that was devoted entirely to water. The group that I arrived to work with was dealing with water quality and treatment in wastewater and drinking water. So, I started down this path just because it was available and I needed the job – but my plan was to spent two years working on this and now it has been more than 25 years. I feel very passionate about this field of work. I feel like this is the way that I have to try to help people, and I love it.

DRI: You are originally from Mexico. What brought you to DRI?

EB: When the position at DRI opened three years ago, I started learning about the water related issues that Nevada and particularly Las Vegas was facing, and was fascinated. The city gets its water supply from Lake Mead then sends treated wastewater back to the lake — so having almost 100 percent recycling of the water is something that caught my attention immediately. Not only because it’s wonderful, but that it may also result in other problems like the recycling of some pollutants that you probably don’t want in your drinking water. That idea really captured me. So I decided to apply for the job, and have had three years of great fun trying to deal all of those problems and promote some solutions that may help to deal with the reality we’re facing in Las Vegas. Reno is not that different – we all need water when we’re living in places where water resources are so scarce. I was really intrigued by how to deal with all of these problems and how I might help.

Erick Bandala (second from left) and his colleagues from DRI's Environmental Engineering Lab. 

Erick Bandala (second from left) and his colleagues from DRI’s Environmental Engineering Lab.

 


For more information about Erick and his research, please visit https://www.dri.edu/directory/erick-bandala.

12 Days of DRI: 2018 in Review

12 Days of DRI: 2018 in Review

It’s safe to say that 2018 has been a great year for DRI. From launching new programs to engage community members in science and technology to making new strides in our core research areas, we’re proud of what we’ve accomplished, and we’re looking forward to all that next year may hold. For our final blog post of the year, we review twelve (but by no means all) of our 2018 highlights, originally posted as a series on our Instagram, @DRIscience.


Sonora Pass, Oct 2018.

Day 1: In early 2018, DRI researchers Ben Hatchett, Ph.D., and Dan McEvoy, Ph.D., published research investigating snow droughts, which have become increasingly common in the Sierra Nevada and Cascade mountains in recent years, as warming temperatures push snow lines higher up mountainsides and cause more precipitation to fall as rain. Their findings traced how snow droughts evolve over a winter season and impact local watersheds and economies.

Now, McEvoy, Hatchett, and collaborator Justin Chambers are working to develop this research further by creating tools that can help scientists track snow droughts and share that information with resource managers.


Solar Roller Teacher Training, December 2018. Day 2: In February, the DRI Science Alive Program, the PreK-12 education and outreach arm of DRI, collaborated with the Nevada Museum of Art to host the first annual Nevada Steam Conference, which brought together nearly 200 educators, administrators, and presenters from across the state to discuss best practices and new approaches to education in STEAM (science, technology, engineering, arts, and math).

In 2019, the Nevada STEAM Conference will happen on Saturday, February 2nd.

Learn more and register.


Day 3: This spring, viewers around the world fell in love with the great horned owl family that nested on an office building at our Reno campus. Their nesting situation was unusual, never before recorded by scientists: a trio of owls, two female and one male, tending two nests side by side. In coordination with the Nevada Department of Wildlife, DRI installed a nest camera and live-streamed the video to YouTube so that anyone could observe this rare nesting situation. The feed quickly went viral and became a news sensation, attracting viewers from around the world and coverage by outlets such as National Geographic and the Audubon. By the time the two owlets successfully fledged in May and the live stream was turned off, the video logged over 20 million hours of viewing.


Dr. Monica Arienzo works on a 30,000 year old ice core in the ice lab at Desert Research Institute, in Reno, Nev., on Wednesday, Feb. 21, 2018. Photo by Cathleen Allison/Nevada MomentumDay 4: This spring, the researchers in DRI’s ultra-trace ice core laboratory published remarkable new findings, tracing the rise and fall of the Roman economy through lead deposits in Greenland ice cores. The team of scientists, archaeologists, and economists from DRI, the University of Oxford, NILU – Norwegian Institute for Air Research, and the University of Copenhagen used ice samples from the North Greenland Ice Core Project (NGRIP) to measure, date, and analyze European lead emissions that were captured in Greenland ice between 1100 BC and AD 800.

Their results provided new insight for historians about how European civilizations and their economies fared over time, and the research captured the attention of media outlets around the world, including the New York Times, the Atlantic, and the Economist. Just this month, the team’s research was listed as one 2018’s top science stories in Discover Magazine.


A general view of activities at the annual open house at the Desert Research Institute Wednesday, May 4, 2017 in Las Vegas. (Photo by David Becker)Day 5: In May, DRI hosted the third annual May Science Be with You open house as part of the Las Vegas Science and Technology Festival. Nearly 3,000 community members visited DRI’s Las Vegas campus for lab tours, hands-on activities, special presentations, and Star Wars themed fun.

Stay tuned for more details on the 2019 May Science Be with You open house—rumor has it there may one more than one open house, and one in Reno, too!

View the photo gallery from the 2018 event.


Brittany Kruger works at Desert Research Institute on May 3, 2018 in Las Vegas. Photo by David Becker/Nevada MomentumDay 6: This June, DRI published its first ever Research Highlights magazine, a revisioning of our Annual Report to showcase engaging stories about research projects and programs at DRI. This fall, the magazine was recognized with awards by Public Relations Society of America chapters in Reno and Las Vegas!

 


Markus Berli works with soil sample.Day 7: This summer, DRI researchers Markus Berli, PhD, and Rose Shillito published research with colleagues from UC Merced about how soils respond to low-severity fires like prescribed burns. Their findings indicate that prescribed burns may do more damage to soils than previously believed, sometimes resulting in long-term damage to soil structure and increasing its susceptibility to erosion. It’s not yet clear whether the negative impacts on soil associated with these low-severity fires outweigh the positives (like recycling nutrients back into the soil and getting rid of overgrown vegetation), but the research team hopes that their work will help inform land managers as they manage wildfires and plan prescribed burns.


DRI tent at the Tahoe Summit, Lake Tahoe, August 2018.Day 8: In August, DRI participated in the 22nd Annual Tahoe Summit, a yearly gathering of federal, state, and local leaders dedicated to the goal of restoring and sustaining Lake Tahoe as one of our most precious environmental treasures. DRI showcased a variety of research projects impacting the Lake Tahoe Basin, including research using unmanned aircraft systems (UAS) to monitor wildfires and stormwater management.


Interns participate in the first ever DRI Cybersecurity Internship Program. Fall 2018.Day 9: This fall, sixteen interns began the first ever DRI Cybersecurity Internship Program, a semester-long program that provides training, certification, and hands-on experience for individuals interested in obtaining marketable job skills related to cybersecurity in collaboration with the SANS Institute, a world-renowned internet security research and education organization. All semester long, the interns have been working with DRI’s Chief Information Security Officer, Brandon Peterson, to gain hands-on experience building cyber-infrastructure using best practices from the National Institute of Standards and Technology (NIST).


Science Distilled, January 2018.Day 10: Fall of 2018 marked the close of the third season of Science Distilled, events presented by DRI and the Discovery Museum that make cutting-edge science approachable through presentations on current and curious topics held at hip locations in a social atmosphere. Topics this year ranged from genetics and heart health to cybersecurity and resilience, and each of the six talks attracted dozens of science enthusiasts around the Reno area.

Stay tuned for news on the 2019 season! There’ll be six fascinating talks, plus surprise science content coming soon.


Fire and smoke plume.Day 11: We at DRI are especially proud of how our researchers work to bring scientific knowledge to the forefront of society by engaging with reporters, policymakers, and community members. For example, Tim Brown, Ph.D., Director of the Western Regional Climate Center at DRI, recently worked with SciLine—a service that connects reporters to academic and industry experts—to produce an in-depth catalogue of information on wildfire science for journalists. Free and open to the public, this scientific information can help provide the expertise and context needed to make sense of scientific topics in the headlines.

Check out the summary of wildfire information and a recorded media briefing by Brown and other wildfire experts.


Images from a Desert Research Institute open house on May 3, 2018 in Las Vegas. Photo by David Becker/Nevada MomentumDay 12: As we conclude our twelve days of reflection on the incredible year we’ve had, we’d be remiss if we didn’t acknowledge one of the key things that’s made it great: YOU! Whether through citizen science projects, community outreach events, collaborations on research projects, or just following along with us online and on social media, you are such an important part of the DRI team. Thank you for being here for science, today and every day.

Q & A with AGU Presenter Rose Shillito

Q & A with AGU Presenter Rose Shillito

Rose Shillito is a hydrologist and graduate student researcher working with Markus Berli, Ph.D., associate research professor of environmental science. Rose has worked at DRI since 2011, and she plans to defend her doctoral dissertation at UNLV and earn her Ph.D. in geosciences this fall.

DRI: In a couple of sentences, what is the ‘plain English’ summary of what are you presenting at AGU? 

Rose Shillito: Fire can cause soils to become water repellent—water will not spontaneously enter the soil. We have developed a physically-based model to understand and predict the effect of soil water repellency on infiltration, thus on the potential for post-fire flooding and erosion.

(Rose was recently featured by the UNLV Foundation for her work on post-fire water repellency. Read the article here: https://www.unlv.edu/news/article/trickle-down-effect.)

DRI: What are you most looking forward to at AGU this year? What do you hope to learn, or who do you hope to connect with? 

RS: At AGU, I like to get an overview of research in my specific topic, but also get a general overview of research directions and methods in my field (hydrology). I get a chance to connect with colleagues and make new connections with other researchers.

DRI: The theme of this year’s meeting is “What Science Stands For.” From your perspective, what does science stand for? 

RS: Currently, to me, science is about answering questions.

Meet Rose at her AGU poster session, “Effective Infiltration Measurements for Fire-Affected Water-Repellent Soils,” happening Tuesday, December 11th during the afternoon session. (Session H23L-2548 in the program.)

This Q&A is part of a series of profiles of DRI scientists who will be participating in the 2018 AGU Fall Meeting, to be held in Washington DC during the week of December 10th. Learn more about this annual meeting of 24,000 scientists from a wide range of disciplines here: https://fallmeeting.agu.org/2018/.

DRI and Collaborators Awarded $6 Million Grant for Innovative Genetic Research

DRI and Collaborators Awarded $6 Million Grant for Innovative Genetic Research

Las Vegas, NV (November 1, 2018):  The Desert Research Institute, in partnership with the Bigelow Laboratory for Ocean Sciences and University of New Hampshire, announced receipt of a $6 million National Science Foundation grant today that will fund the development of new genetic research technologies and build economic capacity in Nevada, Maine, and New Hampshire.

The multifaceted effort, which the researchers will launch next week at the National Science Foundation in Washington, D.C., aims to unlock the genomic data of microscopic organisms that  help to degrade environmental contaminants and drive major biogeochemical cycles that shape global climate.

“There has been an explosion of genomics data over the last two decades, and the next step is connecting that data to what’s actually happening in the environment,” said Ramunas Stepanauskas, Ph.D., director of the Single Cell Genomics Center at Bigelow Laboratory and principal investigator on the project. “We need new infrastructure and approaches to harness the power of genomic technologies, which will help solve some of the great biological mysteries of our planet.”

Single-celled organisms make up the vast majority of biological diversity on our planet, but many are found in hard-to-access places such as the Earth’s subsurface or deep ocean environments, can’t be seen with the naked eye, and can’t yet be grown in lab cultures. As a result, much about these organisms – including their potential for production of natural products for bioenergy, pharmaceuticals, bioremediation, and water treatment – remains unknown.

Bigelow Laboratory scientist Ramunas Stepanauskas collects a water sample on the institute’s dock.

Bigelow Laboratory scientist Ramunas Stepanauskas collects a water sample on the institute’s dock. He is the principle investigator on a new $6 million project that will connect the genetic makeup of individual microbes to their environmental roles and build economic capacity in Maine, New Hampshire, and Nevada. Credit: Bigelow Laboratory for Ocean Sciences.

This four-year project will develop and apply new tools and techniques in genetic analysis to learn about links between the genomes (DNA, or genetic material) and phenomes (observable characteristics) expressed by single-celled organisms in diverse marine and continental environments. The main technical innovation of this project is that information is gained at the level of the individual cell sampled directly from the environment in near-real-time.

To achieve their objectives, the team will gather microbes from coastal ocean habitat in the Gulf of Maine, deep ocean and marine subsurface habitat along the Juan de Fuca Ridge of the northwestern Pacific Ocean, and terrestrial deep subsurface habitat in boreholes that intersect geological fault zones associated with Death Valley, Calif.

Duane Moser, Ph.D., head of DRI’s Environmental Microbiology and Astrobiology Labs in Las Vegas, will lead portions of the project related to the continental subsurface. Moser specializes in microbial and molecular ecology, and has studied microbes of deep underground environments in locations ranging from mines of South Africa, Canada, and the U.S., to caves, especially at Lava Beds National Monument of northern California, to deeply sourced springs from around the Great Basin.

DRI scientist Duane Moser collecting dissolved gas samples from the main project borehole near Death Valley, CA.

DRI scientist Duane Moser collecting dissolved gas samples from the main project borehole near Death Valley, CA. Credit: Duane Moser/DRI.

The deep subsurface appears to serve as a unique repository for microbial diversity, preserving an evolutionary legacy that may range back to the early stages of cellular evolution, says Moser.

“Evidence continues to mount that the deep subsurface can be regarded as its own distinct biome, yet we lack the tools to determine how rock-hosted life persists in isolation over geologic timescales,” Moser said. “This project promises to not only teach us about the identities of to-date mysterious groups of microorganisms, but literally allows us to eavesdrop on the activities of individual cells in mixed communities from deep underground. That is truly unprecedented.”

Moser is also leading a task aimed at adapting the new technologies for the applied science of environmental bioremediation, using polyacrylamide as a test case. Polyacrylamide is a ubiquitous substance found in consumer products and used for drinking water treatment, amendment for agricultural soils, well drilling and fracking, and as a sealant for unlined irrigation canals. While generally considered non-toxic, commercial polyacrylamide preparations contain residues of acrylamide monomer, which do possess toxic properties.

“Microorganisms have a role in the degradation of most manmade contaminants, yet our mechanistic understanding of these essential transformations is largely limited to laboratory studies of a handful of easily cultured bacteria,” Moser said. “These new tools will enable us, for the first time, to identify and track the activities of the real actors behind the environmental degradation of contaminants.”

Image taken from within a naturally flowing artesian borehole in Death Valley, Calif..

Image taken from within a naturally flowing artesian borehole in Death Valley, Calif., which will be utilized for the testing of experimental equipment prior to undersea deployment at the Juan de Fuca Ridge in the Pacific Ocean. Credit: Michael King, Hydrodynamics Group, LL.

The project funds come from the Established Program to Stimulate Competitive Research (EPSCoR), which aims to strengthen the research and technology capacity of states that have historically received low federal research funding. The project leverages Bigelow Laboratory’s state-of-the-art capacity in single cell genomics and flow cytometry, University of New Hampshire‘s expertise in polymer chemistry and synthesis of fluorescently labeled tracer molecules, and the Desert Research Institute’s experience and infrastructure for studying subsurface environments and contaminants of emerging concern.

“Combing single-cell genomics with measurements of microbial metabolism will help us better understand the role of microbes in cycling biologically important compounds,” said Kai Ziervogel, Ph.D., the microbial biogeochemist leading project efforts at University of New Hampshire. “I am excited that this project will provide undergraduate and graduate students opportunities to participate in interdisciplinary research that will contribute to environmental science in a unique way.”

In addition to creating new research infrastructure, the project will spur economic growth through skilled workforce training opportunities and several new jobs – including a new postdoctoral scientist at the Desert Research Institute, new senior research scientist and postdoctoral positions at Bigelow Laboratory, as well as a faculty member at University of New Hampshire. The research team will also provide professional development opportunities, including the training of graduate students and bioinformatics workshops in Maine, New Hampshire, and Nevada.

“As we improve our understanding of the critical functions of life, we can also improve our three collaborating states,” Stepanauskas said. “By enabling novel research, educational programs and workforce development, this work will have broad impact on the research community and beyond.”

Rachel Kaplan and Steven Profaizer from Bigelow Laboratory for Ocean Sciences contributed to this release.

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. Learn more at dri.edu, and connect with us on social media on Facebook, Instagram and Twitter

Bigelow Laboratory for Ocean Sciences is an independent, nonprofit research institute on the coast of Maine. Its research ranges from the microscopic life at the bottom of marine food webs to large-scale ocean processes that affect the entire planet. Recognized as a leader in Maine’s emerging innovation economy, the Laboratory’s research, education, and technology transfer programs are contributing to significant economic growth. Learn more at bigelow.org, and join the conversation on Facebook,Instagram, and Twitter.

The University of New Hampshire (UNH) is a public research university in the University System of New Hampshire. With over 15,000 students between its Durham, Manchester, and Concord campuses, UNH is the largest university in the state. The School of Marine Science and Ocean Engineering, the heart of UNH’s oceanographic research, is the university’s first ‘interdisciplinary school’, designed to address today’s highly complex ocean and coastal challenges through integrated graduate education, research and engagement. As such, it serves as an interdisciplinary nexus for marine science and ocean engineering teaching and research across the University. Learn more at www.marine.unh.edu

Meet Henry Sun, Ph.D.

Meet Henry Sun, Ph.D.

Henry Sun, Ph.D., is an associate research professor of microbiology with the Division of Earth and Ecosystem Sciences at the Desert Research Institute in Las Vegas. Henry specializes in the study of microscopic organisms that live in extreme environments, often using specimens from here on earth to learn about possibilities for life on Mars. He is originally from China and has a bachelor’s degree in botany and master’s degree in phycology (the study of algae) from Nanjing University. He also holds a Ph.D. in microbiology from Florida State University and completed a post-doc in astrobiology (the study of life in the universe) at the Jet Propulsion Lab in Pasadena, CA. Henry has been a member of the DRI community since 2004. In his free time, he enjoys playing pickup basketball with friends in Las Vegas, and spending time with his wife and two kids.

DRI: What do you do here at DRI?HS: I do quite a few things, all centered around the study of life in extreme environments – places that are in one way or another similar to Mars. We are studying what we call analog environments, trying to understand whether there’s life in these places that are comparable to Mars, learning how to go about detecting life and organisms, and developing ideas for reliable instruments that we can send to Mars to look for life there.

DRI: How did you become interested in this line of work?
HS: It started in graduate school, when I was given the opportunity to go to Antarctica, to a place called the Dry Valleys, to do my dissertation work. Until 1976, this was a place thought to be devoid of all life. But my former adviser, Imre Friedmann, extrapolating from his work in the hot deserts in the southwestern U.S., discovered thriving communities of microalgae and cyanobacteria in the pore spaces in the Antarctic sandstone. Sandstone is translucent, so sunlight can penetrate the first few millimeters. The stone holds onto water in the pore spaces so it doesn’t dry out right away. And that’s all you need to support life. I fell in love with these organisms on my very first trip there.

Henry Sun at work in Antarctica, January 2005.

Henry Sun at work in Antarctica, January 2005.

DRI: What did you learn from studying those organisms?
HS: Probably the most remarkable thing we have learned about these organisms is that they have a very slow growth rate. We have monitored a few rocks closely over the last 50 years and never saw any appreciable signs of growth. In fact, they are so long-lived that their age can be determined by radiocarbon decay. In other words, if you look at their radiocarbon content, you would think they are dead, fossilized organisms. But we know they are alive because as soon as we thaw them to a normal temperature they start to breathe, taking up carbon dioxide and releasing oxygen. And because they start to grow and reproduce when we put them in a petri dish and incubate at more favorable temperature conditions.

That said, we still have a lot to learn about these organisms, and the opportunity for a serious study presented itself this year. When my former advisor passed away in 2007, he left behind a large collection of thousands of rocks from Antarctica, amassed over his career, in a walk-in -30oC freezer at Florida State University in Tallahassee, Florida. Last year, Florida State decided to decommission that building, and the samples were about to be thrown out. This past June, with a little help from DRI and NASA, we raised some money and purchased three freezers. I drove to Florida and hauled all of the samples back in a cargo van full of coolers and dry ice. I moved the entire collection to Las Vegas without them ever being thawed, so now they are sitting at DRI waiting to be studied.

An outcrop of Antarctic sandstone at one of Henry Sun's field sites.

An outcrop of Antarctic sandstone at one of Henry Sun’s field sites.

DRI: What are you planning to do with these samples?
HS: Inside of the freezers, the samples are kept at temperatures of -30oC (-22oF) and in complete darkness, but the microbes are still alive. As I said, we have thousands of samples. Only two samples have been studied using modern-day DNA analysis. So, the first thing we want to is a comprehensive molecular study and find out what lives in these samples.

We are also working with colleagues at the NASA Ames Research Center to look for cyanobacteria that can grow not using the visible light, but using the infrared. Visible light, which photosynthetic organisms prefer, is filtered out by the sandstone. But the infrared is still present. It is not as good as the visible, but that is all the organisms at the bottom of the colonized zone have. We speculate that they may subsist on the infrared.

Closeup of one of Henry Sun's Antarctic rock samples, home to unknown species of microorganisms.

Closeup of one of Henry Sun’s Antarctic rock samples, home to unknown species of microorganisms.

DRI: What do you like best about what you do?
HS: I feel most rewarded when we engage school teachers and their students in what we do. We do this through a program called Spaceward Bound, which was created by Chris McKay, DRI’s Nevada Medalist from two years ago. The goal is to train the next generation of space explorers in remote but scientifically interesting places that are analogous to the moon or Mars. The reason why we need to start this now is because the first human mission to Mars may happen as early as the 2030s. The scientists who will go to Mars to study its environment are still in school today. We have done several Spaceward Bound expeditions in the Mojave and Death Valley area with teachers and students from Nevada. To me, there is no greater reward than to see children get inspired by the work we do so that one day they may become scientists themselves and continue to push back the frontier of knowledge.

Henry Sun talks with a student at DRI's 2018 'May Science Be With You' event in Las Vegas.

Henry Sun talks with a student at DRI’s 2018 ‘May Science Be With You’ event in Las Vegas.

For more information on Henry Sun and his research, continue to his research page: https://www.dri.edu/directory/henry-sun

Low-severity wildfires impact soils more than previously believed

Low-severity wildfires impact soils more than previously believed

Above: In semi-arid ecosystems such as the Humboldt-Toiyabe National Forest near Las Vegas, which burned as part of the Carpenter 1 fire during July and August 2013, fuel is limited and fires tend to be short lived and low in peak temperature. New research shows that these fires are more harmful to soils than they initially appear. This photo was taken on January 6, 2015 – approximately 18 months after the wildfire. Credit: Teamrat Ghezzehei, UCM.


New research shows negative effects of fire on soil structure and organic matter

Las Vegas, NV (August 28, 2018): Low-severity wildland fires and prescribed burns have long been presumed by scientists and resource managers to be harmless to soils, but this may not be the case, new research shows.

According to two new studies by a team from the University of California, Merced (UCM) and the Desert Research Institute (DRI), low-severity burns – in which fire moves quickly and soil temperature does not exceed 250oC (482oF) – cause damage to soil structure and organic matter in ways that are not immediately apparent after a fire.

“When you have a high-severity fire, you burn off the organic matter from the soil and the impact is immediate,” said Teamrat Ghezzehei, Ph.D., principal investigator of the two studies and Associate Professor of Environmental Soil Physics at UCM. “In a low-severity fire, the organic matter doesn’t burn off, and there is no visible destruction right away. But the burning weakens the soil structure, and unless you come back at a later time and carefully look at the soil, you wouldn’t notice the damage.”

DRI researcher Markus Berli, Ph.D., Associate Research Professor of Environmental Science, became interested in studying this phenomenon while visiting a burned area near Ely, Nev. in 2009, where he made the unexpected observation that a prescribed, low-severity fire had resulted in soil structure damage in the burned area. He and several colleagues from DRI conducted a follow-up study on another controlled burn in the area, and found that soil structure that appeared to be fine immediately after a fire but deteriorated over the weeks and months that followed. Berli then teamed up with Ghezzehei and a team from UCM that included graduate student Mathew Jian, and Associate Professor Asmeret Asefaw Berhe, Ph.D., to further investigate.

Researcher examines soils in a burned area near Las Vegas.

Researcher Markus Berli from the Desert Research Institute examines the soils at a burned area in the Humboldt-Toiyabe National Forest near Las Vegas on January 6, 2015, approximately 18 months after the area burned in the Carpenter 1 fire of 2013. Credit: Teamrat Ghezzehei, UCM.

Soil consists of large and small mineral particles (gravel, sand, silt, and clay) which are bound together by organic matter, water and other materials to form aggregates. When soil aggregates are exposed to severe fires, the organic matter burns, altering the physical structure of the soil and increasing the risk of erosion in burned areas. In low-severity burn areas where organic matter doesn’t experience significant losses, the team wondered if the soil structure was being degraded by another process, such as by the boiling of water held within soil aggregates?

In a study published in AGU Geophysical Research Letters in May 2018, the UCM-DRI team investigated this question, using soil samples from an unburned forest area in Mariposa County, Calif. and from unburned shrubland in Clark County, Nev. to analyze the impacts of low-severity fires on soil structure. They heated soil aggregates to temperatures that simulated the conditions of a low-severity fire (175oC/347oF) over a 15-minute period, then looked for changes in the soil’s internal pore pressure and tensile strength (the force required to pull the aggregate apart).

During the experiment, they observed that pore pressure within the soil aggregates rose to a peak as water boiled and vaporized, then dropped as the bonds in the soil aggregates broke and vapor escaped. Tensile strength measurements showed that the wetter soil aggregates had been weakened more than drier soil samples during this process.

“Our results show that the heat produced by low-severity fires is actually enough to do damage to soil structure, and that the damage is worse if the soils are wet,” Berli explained. “This is important information for resource managers because it implies that prescribed burns and other fires that occur during wetter times of year may be more harmful to soils than fires that occur during dry times.”Next, the research team wondered what the impact of this structural degradation was on the organic matter that the soil structure normally protects. Soil organic matter consists primarily of microbes and decomposing plant tissue, and contributes to the overall stability and water-holding capacity of soils.

In a second study that was published in Frontiers in Environmental Science in late July, the UCM-DRI research team conducted simulated burn experiments to weaken the structure of the soil aggregates, and tested the soils for changes in quality and quantity of several types of organic matter over a 70-day period.

They found that heating of soils led to the release of organic carbon into the atmosphere as CO2 during the weeks and months after the fire, and again found that the highest levels of degradation occurred in soils that were moist. This loss of organic carbon is important for several reasons, Ghezzehei explained.

“The loss of organic matter from soil to the atmosphere directly contributes to climate change, because that carbon is released as CO2,” Ghezzehei said. “Organic matter that is lost due to fires is also the most important reserve of nutrients for soil micro-organisms, and it is the glue that holds soil aggregates together. Once you lose the structure, there are a lot of other things that happen. For example, infiltration becomes slower, you get more runoff, you have erosion.”

Researcher collects soil samples in burned area near Las Vegas.

Researcher Rose Shillito from DRI collects soil samples in a burned area in the Humboldt-Toiyabe National Forest near Las Vegas on January 6, 2015, approximately 18 months after the area burned in the Carpenter 1 fire of 2013. Credit: Teamrat Ghezzehei, UCM.

Although the research team’s findings showed several detrimental effects of fire on soils, low-severity wildfires and prescribed burns are known to benefit ecosystems in other ways — recycling nutrients back into the soil and getting rid of overgrown vegetation, for example. It is not yet clear whether the negative impacts on soil associated with these low-severity fires outweigh the positives, Berli says, but the team hopes that their research results will help to inform land managers as they manage wildfires and plan prescribed burns.

“There is very little fuel in arid and semi-arid areas, and thus fires tend to be short lived and relatively low in peak temperature,” Ghezzehei said. “In contrast to the hot fires and that burn for days and weeks that we see in the news, these seem to be benign and we usually treat them as such. Our work shows that low-severity fires are not as harmless as they may appear.”

The study, “Soil Structural Degradation During Low‐Severity Burns,” was published on May 31, 2018 in the journal AGU Geophysical Research Letters and is available here: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078053.

The study, “Vulnerability of Physically Protected Soil Organic Carbon to Loss Under Low Severity Fires,” was published July 19, 2018 in the journal Frontiers in Environmental Science, and is available here: https://www.frontiersin.org/articles/10.3389/fenvs.2018.00066/full.

###

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit  www.dri.edu.

Tesla selects DRI’s Science Alive to develop statewide teacher training infrastructure

Reno, NV (July 19, 2018): The Desert Research Institute is proud to announce that the DRI Science Alive K-12 Outreach Program has been selected as one of several recipients of the first round of funding through Tesla’s new Nevada K-12 Education Investment Fund. This funding is an initial disbursement, part of a multi-year proposed plan Tesla has developed in partnership with DRI to invest in Nevada’s education system.

Because of the proven success and expertise of DRI’s Science Alive K-12 Outreach Program in engaging students in STEM and training Nevada educators, Tesla has looked to DRI to help develop and implement a statewide professional development infrastructure for educators that will give Nevada students the chance to get excited about STEM early on in their education and give them the skills needed to success in a STEM career.

“On behalf of everyone at the Desert Research Institute, we are honored to be a part of this important moment for Nevada students and we are tremendously proud that Tesla has looked to DRI to help develop and implement Nevada’s teacher training infrastructure,” said DRI President Kristen Averyt, Ph.D.

With an initial investment from Tesla of $263,924, the DRI Science Alive program staff will develop a statewide teacher professional development curriculum and onboarding process for new robotics programs in partnership with FIRST, the REC Foundation (VEX), Solar Roller, and the University of Nevada, Reno and the University of Nevada, Las Vegas.

In addition to coordinating teacher trainings, DRI will also be evaluating the effectiveness of robotics programs in student achievement and attitudes toward STEM.

“Our hope is that after implementing and evaluating this model of encouraging STEM engagement through robotics, we can improve upon current methods and ultimately develop best practices for all schools,” said Amelia Gulling, DRI’s K-12 STEM Education Manager. “If we find that this model is successful in Nevada, where we have some of the worst education rankings in the country, then it’s the model that we need to use across the country.”


Official Nevada Department of Education release:
TESLA ANNOUNCES INITIAL $1.5M IN K-12 EDUCATION GRANTS

CARSON CITY, Nev. – As part of its commitment to contribute $37.5 million over five years to K-12 education in Nevada, Tesla announced an initial $1.5 million in funding grants at today’s Nevada Board of Education meeting. The goal of the investment is to encourage students of all backgrounds to consider a career in science, technology, engineering and math (STEM) or sustainability, and to develop the next generation of engineers in Nevada.

“An integral part of our vision for the new Nevada economy is developing an educated workforce that meets the demands of the industries coming into our state,” said Gov. Brian Sandoval. “With this initial investment, even more students in Nevada will be exposed to STEM education and we are grateful to Tesla for their commitment to education in Nevada.”

Tesla announced the following education grants today:

  • $315,550 to FIRST Nevada and $127,100 to Robotics Education and Competition Foundation (VEX) as part of a multi-year investment for the establishment of a quality robotics program at every school in Nevada.
  • $263,924 to the Desert Research Institute for the initial development of a statewide teacher training infrastructure focusing on robotics and STEM, with future collaboration in partnership with the University of Nevada, Reno and the University of Nevada, Las Vegas.
  • $262,700 to The Envirolution, Inc. for the Project ReCharge initiative, a STEM-based program which collaborates with community partners, school districts, teachers and students, to deliver hands-on education related to energy, sustainability, and project-based learning opportunities that empower students to make local schools and businesses more energy efficient.
  • $200,000 to Jobs for Nevada’s Graduates (JAG Nevada) to deliver mentoring, employability skills development, career association, job development, and job placement services to students across the state.  JAG Nevada will be developing a new Education to Employment pathway across Nevada industries, and expanding access to 20 percent more students with this first investment.
  • $154,083 to Sierra Nevada Journeys (SNJ) to foster students’ STEM passion and achievement at an early age.  SNJ will provide 250 scholarships for students in underserved communities to attend the Overnight Outdoor Learning program at Grizzly Creek Ranch, increase access to SNJ STEM programs to 900 additional students, and kickstart a new Girls in Engineering camp in partnership with Tesla team members.
  • $76,643 to Energetics Education, Inc. to pilot the Solar Rollers program in Washoe County. This initiative challenges high school teams to design, build, test and race sophisticated solar-powered radio-controlled cars while learning the fundamental concepts of a complete energy system.
  • $50,000 each to the Clark County and Washoe County School Districts as part of the establishment of multi-year special assignment roles in career technical education (CTE) offices to train and implement programming from within, while also supporting neighboring districts.

“The demand for STEM jobs in Nevada will continue to grow dramatically over the next few years,” said JB Straubel, Tesla’s Chief Technology Officer. “That is why we’re investing in initiatives that inspire students to choose a career in STEM and sustainability and give them a foundation for success.”

Tesla selected these entities in collaboration with an advisory group comprised of Nevada education leaders, business leaders, non-profits and government officials.

“Tesla’s commitment supports our vision of becoming the fastest improving state in the nation in education,” said Steve Canavero, Ph.D., Superintendent of Public Instruction. “Lofty goals such as these don’t materialize in a vacuum. In addition to the partners we have in our school districts and charter schools, we have also sought out partners in industry.  Tesla has been incredibly collaborative and thoughtful in providing us data and evidence based material that will help inform our decisions and their investment in the new Nevada economy.”

Tesla will be making continuing investments in existing initiatives, and regularly announcing new entities receiving funding on a quarterly basis, pending investment reviews. In addition to this K-12 investment, Tesla currently has a high school graduate apprenticeship, the Manufacturing Development Program, encouraging Nevadans to learn about manufacturing fundamentals in partnership with the Governor’s Office of Economic Development, and regularly hosts students and teachers at Gigafactory 1 near Sparks, Nev. Tesla’s mission is to accelerate the world’s transition to sustainable energy. Tesla builds not only all-electric vehicles but also infinitely scalable clean energy generation and storage products. Entities interested in learning more about this investment and opportunities to partner with Tesla can reach out to educationprograms@tesla.com.

Ancient ‘quids’ reveal genetic information, clues into migration patterns of early Great Basin inhabitants

Ancient ‘quids’ reveal genetic information, clues into migration patterns of early Great Basin inhabitants

Above: Cave opening at the Mule Springs Rockshelter in southern Nevada’s Spring Mountain Range. Credit: Jeffrey Wedding, DRI.


 

Las Vegas, NV (April 24, 2018): If you want to know about your ancestors today, you can send a little saliva to a company where – for a fee – they will analyze your DNA and tell you where you come from. For scientists trying to find out about ancient peoples, however, the challenge is more complex.

Research published in the journal PLOS ONE by a team of archaeologists and microbiologists from Nevada’s Desert Research Institute (DRI) and Southern Illinois University Carbondale (SIU) showcases the use of modern research methods to uncover clues about the genetic ancestry of Native Americans who inhabited the Desert Southwest during the last thousand years.

“We were surprised by the consistency with which we were able to recover intact human DNA from a common type of plant-based artifact,” explained co-principal investigator Duane Moser, Ph.D., an associate research professor of microbiology at DRI and director of DRI’s Environmental Microbiology Laboratory.

During the Late Holocene Epoch, which began 12,000 to 11,500 years ago and continues through the present, occupants of the Mule Spring Rockshelter in the foothills of the Spring Mountains of southern Nevada commonly gathered agave and yucca plants for food. The artichoke-like hearts and inner leaves of the plants were roasted then chewed to consume the sweet fleshy pulp. This left wads of stringy fibers called ‘quids,’ which were spit out and left behind.

In the late 1960s, researchers from DRI and the University of Nevada, Las Vegas (UNLV) led by Richard Brooks, recovered thousands of quids at the rockshelter. Put into storage for half a century without any consideration for DNA preservation, a DRI-led research team decided to re-examine the quid specimens as possible repositories for ancient DNA.

“The quid’s coarse texture is excellent for capturing skin cells from the mouth, making them the equivalent of the modern-day cheek swab,” explained Susan Edwards, an associate research archaeologist at DRI and co-principal investigator who first thought of applying DNA extraction techniques to the quid samples.

A wad of stringy agave plant fibers commonly called ‘quids’.

A wad of stringy agave plant fibers commonly called ‘quids’. Credit: DRI

The research team used laboratory and computational resources at DRI’s Southern Nevada Science Center in Las Vegas, and later at SIU, to identify changes in the mitochondrial DNA sequences that are maintained in ancestrally related populations called haplogroups. These haplogroups can then be compared to Native American tribes and other ancient DNA lineages.

The study showed that the Mule Spring Rockshelter quid specimens ranged in age from about 350 to 980 years old. Because Mule Spring Rockshelter sits at a crossroads between the southern Great Basin, the Mojave Desert, and the Southwest Puebloan cultures, these results may provide a better timeline for an important but contentiously debated event in human history known as the Numic Spread.

Today’s Numic people contend they have always been here, a position some scientists readily support. However, some evidence suggests that Numic-speaking ancestors of contemporary native peoples spread from southern California throughout the Great Basin about 500 to 700 years ago; a date range which overlaps with the current study. Other studies suggest a much earlier arrival.

This research marks only the second time that scientists have been able to sequence human DNA from plant-based artifacts, expanding upon an approach utilized by Steven LeBlanc of Harvard University.

“Since these materials were also radiocarbon dated, in essence they provide a time-resolved hotel registry for this unique site over a period of hundreds of years,” added Moser.

As an added benefit of utilizing DNA from quid samples (rather than from more traditional sources such as bones or teeth), the research team found that they were able to obtain the information they needed while being respectful of cultural sensitivities.

“The distinct advantage of this genetic technique, is that it does not require the sampling of human remains” said Scott Hamilton-Brehm, lead author on the study and assistant professor of microbiology at SIU who completed his postdoctoral research at DRI.

In the future, the team hopes to continue this work by targeting additional quids from the Mule Spring Rockshelter collection, with the possibility of corroborating evidence of older dates for habitation of the site suggested by prior studies of more traditional cultural artifacts. Plans are in the works to perform similar studies on quids from other Great Basin sites to glean additional information about the movements of ancient peoples and utilize more powerful analytical approaches to obtain greater DNA sequence coverage than was obtained by this pilot study.

“We look forward to learning more about Native American presence in the Great Basin and Southwest area, and how the data compares over time,” added Lidia Hristova, a graduate of the UNLV Anthropology Program who conducted much of the hands-on DNA extraction from the samples while working as an undergraduate research assistant at DRI and studying at UNLV.

The full study, “Ancient human mitochondrial DNA and radiocarbon analysis of archived quids from the Mule Spring Rockshelter, Nevada, USA,” is available online from  PLOS ONE: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194223 

Mule Spring Rockshelter is a protected cultural resource located on BLM-managed lands. DRI access to the Mule Spring collection was granted under permit and loan agreement. 

Tim Crosby, Communications and Marketing Strategist at SIU Carbondale contributed to this press release. 

Additional photos available upon request.  

###

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, please visit  www.dri.edu.

Meet Brittany Kruger, Ph.D.

Meet Brittany Kruger, Ph.D.

Brittany Kruger, Ph.D., is a staff research scientist in geobiology with the Division of Hydrologic Sciences at the Desert Research Institute in Las Vegas, NV. She specializes in the study of microbes that live in deep underground environments, such as those found inside of deep mines. Brittany is a Minnesota native, and holds a Ph.D. and Master’s Degree in Water Resources Science from the University of Minnesota, Duluth. Her work has taken her to diverse environments, including Lake Superior, Lake Malawi in Africa, Woods Hole, MA, Japan, and a mile-deep abandoned gold mine in South Dakota. She has been a member of the DRI community since 2014, when she moved to Las Vegas for a position in Dr. Duane Moser’s Environmental Microbiology Lab. In her free time, Brittany enjoys rock climbing in Red Rock Canyon and making trips into the Sierras.


DRI: What do you do here at DRI?
BK: I am a staff scientist here at DRI. I support a number of different projects that focus on deep biosphere life, which essentially means we try and examine life as deep as we can access it underground. Specifically, we look for microbial life and try and understand how those organisms are functioning given the stresses that they encounter deep underground.

DRI: How do you access deep underground environments?
BK: There are a couple different ways you can access the deep biosphere. One way is to actually go there – you can go down in deep mines, for example. In that scenario we can actually bring instruments and equipment down with us. One of our most recently active field sites is an old gold mine in South Dakota, where we are able to go about a mile underground.

Another option to access subsurface life is to use deeply drilled wells that access water or aquifers that are very far underground. This is the approach that we use at active field sites in the Death Valley and Armargosa Valley areas. There aren’t a lot of places in the world where you can access the very hottest, deepest part of the earth quite as easily as we can in this area, because that surface layer of the earth is a little bit thinner here, particularly in the Death Valley region.

Brittany Kruger collects samples from an underground mine site.

Brittany Kruger collects samples from an underground mine site.

DRI: We understand that some of your research has implications for life on other planets. Can you tell us about that?
BK: One of the projects that I’ve been focusing on since I started here at DRI is the NASA Astrobiology Life Underground Project. I have served as continental fieldwork coordinator for that project since joining DRI. We try to access the deep biosphere in multiple locations to install experimentation and collect samples, and we use what we learn about the way microbes are metabolizing and surviving in those locations to help us understand how life might be functioning on other planets that experience the same or similar stressors, like extreme heat, temperature, pressure, radiation, lack of sunlight, etc.

Right now, we’re installing experiments that focus on better understanding exactly what chemical reactions microbes are using to live in these deep environments.  If you think about it, the majority of life that we understand well, the life on the surface of the planet, uses sunlight for energy at some point in their food chain. But these microbes deep underground do not.  Instead they’re able to rely on dissolved metals or other compounds to produce the energy they need to live. Sometimes they need to be in actual physical contact with these compounds, and attach to those surfaces to live.  It’d be similar to us having to go touch a rusty car in order to breathe. So we’re installing various mineral materials into these deep biosphere environments and studying the microbial populations that colonize them.

As an additional component to that project, we also work closely with members of the SHERLOC instrument team at the NASA Jet Propulsion Laboratory, who are developing an instrument slated to fly on the Mars 2020 Rover that uses Raman and Luminescence scanning to detect organics and chemicals. A lot of the field samples and experiment results are analyzed with that instrument to learn more about our samples and to help provide background data for the instrument prior to its Mars deployment.

Brittany Kruger collects samples from an underground mine site.

Brittany Kruger collects samples from an underground mine site.

DRI: What is it like to work deep underground?
BK: It’s great. I love it. I’m always excited to go down. It’s absolute pitch black, and it gets hotter the deeper you go. At our hottest underground site, it is something like 90 degrees and 90 percent humidity. It is uncomfortable to be there for a long time, for sure. But the facility we work in does a really good job of trying to mitigate air flow while we’re there to keep that a little more comfortable.

One of the best parts is also spending time with the old miners. I go to South Dakota every few months, and spend multiple days underground accessing our sites in what was once the Homestake Gold Mine.  Mining has ceased in the facility, and the entire mine has now been dedicated solely to science and is called the Sanford Underground Research Facility.  So it’s a really unique facility where people who previously mined the workings are now employed as underground guides for scientists. There are extremely high-level physics labs located about a mile underground on the deepest accessible level. You’d never know you were underground in those labs; they’re like any state of the art aboveground facility.

But, that’s not where we want to go – we want to go to the far away, dirty, dark, hot places where it’s not maintained and where we can access the unaltered water flowing out of the mine wall. So, we get to hang out with the old miners that know the mine, and know how to access those places and know how to do it safely. So that’s fantastic – we get to see some really exciting things and some really awesome old history. It’s fun.

Brittany Kruger collects samples from an underground mine site.

Brittany Kruger collects samples from an underground mine site.

 

New research improves prospects for imperiled Devils Hole Pupfish in captivity

New research improves prospects for imperiled Devils Hole Pupfish in captivity

Above: Researchers Joshua Sackett (left) and Duane Moser (right) of DRI help National Park Service officials move scaffolding infrastructure during a routine sampling visit to Devils Hole on December 13, 2014. Credit: Jonathan Eisen.


DRI study finds key differences between artificial habitat and the real Devils Hole

Las Vegas, NV (Tuesday, March 20, 2018): In a first-of-its kind study of comparing the microbiology of Devils Hole with that of a constructed scale replica at the Ash Meadows Fish Conservation Facility (AMFCF), a team of scientists from the Desert Research Institute (DRI) in Las Vegas discovered key differences in nutrient levels and species composition that may be impacting the ability of the highly endangered Devils Hole Pupfish (Cyprinodon diabolis) to survive in captivity.

“We were interested in taking a closer look at the chemical and biological factors that control productivity at both sites,” said Duane Moser, Ph.D., an associate research professor of microbiology at DRI who has been involved with research at Devils Hole since 2008. “In studying both, we could gain some insights into how well the artificial refuge actually replicates Devils Hole, and in turn, offer recommendations for ways to make the refuge a better habitat for the pupfish.”

Devils Hole Pupfish (population 115 in autumn 2017) are an iridescent blue, one-inch-long pupfish. They are native only to Devils Hole, an isolated water-filled cavern of unknown depth located in a detached unit of Death Valley National Park within the Ash Meadows National Wildlife Refuge in Amargosa Valley, Nevada. Devils Hole is an extreme environment, with water temperatures and dissolved oxygen concentrations near their lethal limits for most fishes.

Since 2013, scientists have been trying to establish a backup population of these endangered fish in a constructed tank at the AMFCF, which is located a short distance west of Devils Hole. Although the facility was designed to match the climate, water chemistry and physical dimensions of an area of shallow shelf habitat in Devils Hole, the pupfish have had only limited success reproducing and surviving in this artificial environment.

In 2015, Moser and a team of researchers from DRI set out to learn if there were other factors that might be impacting the success of these fish. Their new study, published in the March edition of PLOS One, characterizes and compares water chemistry and microbial communities between Devils Hole and the AMFCF.

Although water temperature and dissolved oxygen at the AMFCF are intentionally maintained at values that are slightly lower and higher, respectively, from those of Devils Hole, this work shows that the nutrient balance between the two sites is also very different, with AMFCF being strongly nitrogen limited – about five times lower than that of Devils Hole.

In the microbial communities, which contribute to the distribution and availability of dissolved nutrients in the water and are also a food source for the pupfish, the research team discovered more than 2,000 microbial species from 44 distinct phyla present in the water at Devils Hole. They detected similar levels of species diversity at AMFCF, but found that different bacterial phyla were dominant at each site. These differences may relate to the observed differences in nitrogen concentrations.

“Nitrogen levels have an effect on the types of organisms that you’ll find, and the types of metabolisms that they have,” said Joshua Sackett, a graduate research assistant with the Desert Research Institute and doctoral student in the School of Life Sciences at the University of Nevada, Las Vegas. “We found a lot fewer of at least one major category of primary producers – the cyanobacteria – in the AMFCF compared to Devils Hole, and we think that’s due to differences in nutrient concentration.”

One of the strengths of the comparative power of this study is that the data from each site were gathered on the same day. This study highlights the potential importance of considering water chemistry and microbiology when constructing artificial fish habitats – and the team hopes that the information will provide a valuable contribution to the continued survival of the Devils Hole Pupfish in captivity.

“This work revealed very different microbial populations, which we infer might correspond to large differences in nutrient dynamics between the sites – especially in terms of nitrogen,” Moser said. “Consequently, some relatively modest tweaks in how the refuge is operated could potentially improve the prospects for continued survival of one of Earth’s most imperiled fishes.”

The full version of the study – A comparative study of prokaryotic diversity and physicochemical characteristics of Devils Hole and the Ash Meadows Fish Conservation Facility, a constructed analog – is available online: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194404

For more information about DRI, visit www.dri.edu

Photo caption: Researchers Joshua Sackett (left) and Duane Moser (right) of DRI help National Park Service officials move scaffolding infrastructure during a routine sampling visit to Devils Hole on December 13, 2014. Credit: Jonathan Eisen.

Additional photos are available upon request.

###

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Saving the Desert’s Upper Crust

To a casual observer, desert lands may appear a barren vista of sand and soil, sparsely dotted with shrubbery and cacti but, in reality, they are lush with microscopic plants: lichens, mosses, and cyanobacteria. There isn’t an inch of soil that is without these organisms.

“These organisms are a critical component of the desert ecosystem: they stabilize soils against erosion and provide essential nutrients to plants,” says NEXUS scientist Dr. Henry Sun, a research microbiologist at the Desert Research Institute (DRI).

These coverings-known as cryptogamic crusts-while providing essential ecosystem services, are also very fragile. Both the installation of solar farms and regular maintenance activities can disturb and remove this biological layer. “Such activities can destroy the crusts and result in increased dust emission,” Sun says. “And, once destroyed, they take decades to recover.”

Consequently, Sun and his graduate student, Lynda Burns, are trying to understand the impacts that large scale solar farms will have on this component of desert ecosystems and how to develop mitigation strategies to help prevent, or remediate any damage. “The goal of our research is to know the vulnerabilities of the organisms that build these protective crusts and to use the information to guide future restoration mitigation efforts in the context of solar plant impacts,” Sun says.

Banking Biology

The presence of these non-flowering plants is a key indicator of a healthy desert ecosystem. As well as forming a protective soil crust, and a barrier to erosion, they also provide nutrients to plants, mediate the transfer of water and provide a base for seed germination and plant growth.  In addition, the cyanobacteria can convert the nitrogen in the atmosphere into compounds that act as fertilizers for other plants, via a process called nitrogen fixation. “So you fix nitrogen using solar energy into a form that is available to plants,” Sun says.

Recognizing the importance of these crusts, and also their vulnerabilities, scientists have been investigating how to protect them. One suggested approach has been to harvest the crusts prior to a disturbance such as the installation of a solar farm, and save them. Once the construction is complete, the researchers’ suggestion is then to use the preserved crusts to inoculate the soil and aid in restoring the new crust.

The desert can prove a harsh environment for plants with temperatures and rainfall fluctuating between extremes. Also, a process called photochemical oxidation, facilitated by the sun’s ultraviolet rays can result in reactive oxygen species that are extremely damaging to life. “For this strategy to be effective, we need to know if the organisms lose vitality during storage, how long they would survive, and how to help them survive and thrive once they’ve been re-introduced to the desert habitat,” Sun says.

The scientific community does not yet know the answers to such questions and it was a knowledge gap that the NEXUS team set out to close. They began by collecting and saving the organisms in the soil crust and set about trying to understand how long those samples could survive and whether they could be successfully reintroduced to the desert environment. “There were two questions we’re trying to answer,” Sun says. “One, whether you can store the organisms and, two, when you reintroduce them what can we do to help them re-establish?”

Putting Crusts to the Test

In the lab, the scientists started their investigations by storing lichen samples from the Mojave Desert for different periods of time. In their natural habitat the lichens in the crusts alternate between drying out and hydration. During the desiccation process, they suffer from cellular damage but once they are hydrated repair and growth is possible. In their experiments, the researchers watered the stored samples and then monitored their recovery. “Healthy specimens become active within a minute of watering and compromised lichens go through a period of repair before they become productive,” Sun says. The researchers assumed that those lichens that showed no activity after 8 hours were dead.

Using this methodology, the scientists found that lichens can be stored dry at room temperature in ambient air for up to a year without any significant decline in vitality.  One-year old samples showed similar behavior to fresh samples: once they were given water they were ready to use light energy and photosynthesize.  Three and even ten-year-old samples were weaker and it would take them between 25 and 200 minutes to restore photosynthesis after the addition of water.

The scientists then attempted to determine how ultraviolet (UV) rays would impact the lichens when they were reintroduced back into the desert. The crust lichens protect themselves from UV light by synthesizing compounds that create a screen that blocks the harsh rays.  Even when the researchers put intense UV source as close as 25 centimeters away for one week the lichens suffered only minor damage. “It was well within their ability to repair,” Sun says. “This level of ionizing radiation resistance is unparalleled in the microbial world.”

The scientists did find, however, that the lichens were vulnerable to high concentrations of ozone. Fumigation in ozone for long periods caused photochemical oxidation, killing Collema, a cyanobacterial lichen, and severely damaging Placidium, a green algal lichen. Previous studies on the stress tolerance of crust-forming organisms considered only the impacts of UV radiation and desiccation. “Our work showed that photochemical oxidation presents a more severe stress than UV and desiccation,” Sun says. “And this has implications for crust storage and restoration.”

Given the evidence that the crust lichens are primarily vulnerable to oxidation, Sun recommends that the samples be stored in a non-oxidizing gas, such as nitrogen, instead of ambient atmosphere, to minimize oxidative stress.  In the field, amending the soil with antioxidants could protect the newly restored “seed” organisms from oxidation and thereby help them grow faster.  Both the ability of the organisms to be stored and their ability to survive typical desert conditions bodes well for the future, Sun says. “The research suggests that crust restoration is feasible and should be considered by land managers and solar companies,” Sun says.


This story was written by Jane Palmer and was originally published by the Solar-Energy-Water-Environment Nexus Project. For more information about the Nexus Project, visit: https://solarnexus.epscorspo.nevada.edu/

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, visit www.dri.edu.

DRI Science Alive included in Nevada’s newest list of recommended STEM programs

Reno, NV (Weds, Nov. 8, 2017): The Desert Research Institute (DRI) is proud to announce that Science Alive, the Institute’s K-12 outreach program and home of the Green Box initiative, has been selected for inclusion on the Nevada STEM Advisory Council’s new list of recommended STEM programs.

DRI Science Alive provides inquiry-based STEM (science, technology, engineering, and mathematics) curriculum, classroom supplies, and professional trainings to any teacher in Nevada that is interested, free of charge.

The DRI Science Alive program is the only Nevada System of Higher Education (NSHE) program and one of only two non-profit programs (out of 16 total) to earn this commendation.

“This endorsement corroborates DRI’s reputation as a STEM education leader in our state,” said Dr. Kristen Averyt, President of DRI. “We are truly honored to be included in this group.”

The Governor’s Office of Science, Innovation and Technology (OSIT) and the Nevada STEM Advisory Council (Council) announced 16 STEM programs approved for inclusion on the Council’s list of recommended STEM programs in October 2017. Each program’s application was thoroughly evaluated by a group of trained, Nevada-based reviewers according to a Nevada-specific rubric and questions.

“Educators across the State have a mission to provide the best education possible to their students. This list will help teachers, principals, and school districts select the best STEM resources available to meet the needs of their students,” said Kelly Barber, Co-Chair of the Nevada STEM Advisory Council and STEM Coordinator for the Washoe County School District.

In its State Strategic Plan for STEM, the Nevada STEM Advisory Council established priorities and goals to ensure that all of Nevada’s students have the opportunity to gain a high-quality STEM education. The Strategic Plan recommends that Nevada identify and fund evidence-based, high-quality formal and informal STEM practices and programs. In order to determine which STEM programs meet this evidence-based, high-quality standard, OSIT and the STEM Advisory Council partnered with Change the Equation and WestEd to develop review criteria and vet STEM programs for inclusion on a list of recommended programs for funding. Programs that met the eligibility criteria for the national STEMworks database were eligible for consideration to be included on Nevada’s list.

“I am very impressed with the programs that made the Council’s list. This list of recommended STEM pro-grams will be a great resource for both the State and for our schools to guide funding decisions toward pro-grams that have demonstrated rigor in content, evaluation, replicability, and sustainability,” said Brian Mitchell, Director of OSIT. “I want to thank the evaluators from across Nevada for lending their time and expertise to review the applications.”

Inclusion on STEM Advisory Council’s list does not guarantee funding. In Nevada, schools and school districts make curricular, professional development, and other funding decisions. However, school districts in Nevada may apply for future STEM education funding from the Nevada Department of Education or from OSIT’s K-5 STEM Grant to fund STEM programs on the Nevada STEM Advisory Council’s list. Additionally, the Nevada Legislature, local school districts, and private philanthropy in Nevada may also use the Nevada STEM Advisory Council’s list to guide their own STEM education investments. The list is meant as a resource to school leadership; the list is not exhaustive of all good STEM programs and use of the list is not mandatory.

“Our mission with Science Alive is to extend the amazing science and innovation that happens every day at DRI into Nevada’s classrooms,” said Amelia Gulling, DRI Science Alive program administrator. “This incredible honor will not only allow DRI faculty and staff to enhance their collaborations with local teachers, schools and school districts, but also expand our fundraising efforts and community partnerships.”

Since its inception in 2000, DRI’s Science Alive program has reached over 60,000 students, in more than 400 schools, across every county in Nevada.

Learn more about DRI’s Science Alive program at – https://sciencealive.dri.edu/

Read the official OSIT announcement here – http://osit.nv.gov/uploadedFiles/ositnvgov/Content/News/STEMworks%20Announcement%20Press%20Release%20Final(2).pdf

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

The Nevada STEM Advisory Council: The mission of the Nevada STEM Advisory Council is to increase student interest and achievement in the fields of science, engineering, technology, and mathematics, leading students to rewarding careers in the New Nevada economy. The STEM Advisory Council is charged with identifying and awarding recognition to students and schools throughout Nevada that excel in STEM.

The Governor’s Office of Science, Innovation and Technology (OSIT): The mission of OSIT is to coordinate, support, and align efforts by K-12 and higher education, workforce development and employers to improve science, technology, engineering, and mathematics (STEM) education and STEM workforce development so that Nevada’s workforce can meet the demands of its growing economy.

DRI secures $47 million to continue work for U.S. Department of Energy

LAS VEGAS, Nev. (May 18, 2017): Building on more than 40 years of service to the U.S. Department of Energy, the Desert Research Institute (DRI) announced today it has been awarded a long-term research contract to support the national security mission of the Nevada National Security Site (NNSS).

The new Technical Research, Engineering, and Development Services contract has a value of up to $47.7 million and extends for up to five years. DRI faculty and staff will provide scientific and engineering services to the U.S. Department of Energy (DOE), National Nuclear Security Administration/Nevada Field Office in support of nuclear stockpile stewardship, nonproliferation and counterterrorism, emergency response to radiological and nuclear events, remediation and restoration of legacy environmental issues, cultural resources compliance, and sustainable land stewardship.

“This is the largest multi-disciplinary research program at DRI,” said Dr. Robert Gagosian, DRI Acting President. “We have a superb team of people from across the Institute – on both our Las Vegas and Reno campuses – who are dedicated to serving DOE in this very important effort in support of our nation’s security.”

DRI contributes to nearly all of the DOE Nevada Field Office’s major programs.

DRI faculty and staff apply their expertise to environmental restoration and waste management for activities such as groundwater modeling and sampling, and evaluation of soil stability. Experienced faculty serve as advisors for the stockpile stewardship program ensuring national defense readiness, and contribute to research teams developing new tools for detecting nuclear tests in support of treaty verification and nuclear nonproliferation. Historic and cultural resources scientists support DOE in conducting operations in compliance with regulations and facilitating involvement with affected Tribal groups. DRI scientists also work in Nevada communities around the NNSS to operate a citizen-based environmental monitoring program.

“New research will include seismic hammer experiments to improve detection of foreign underground nuclear tests, and flood hazard assessments for site facilities,” explained Jenny Chapman, Program Manager for DRI’s DOE contract, and a research hydrogeologist. “As well, DRI’s archaeologists will continue their cultural resources evaluations of prehistoric and historic structures and artifacts on the NNSS, including documentation of the significant role the NNSS played in the Cold War.”

Continuing research will include investigating the way groundwater and contaminants move through fractures in rock at the Pahute Mesa underground nuclear test area; and identifying the impact of wildfire on soil erosion to support long-term stewardship of lands with residual surface contamination and ensure the protection of wildland firefighters.

The contract also renews support for the operation of the Community Environmental Monitoring Program in both urban and rural locations throughout Southern Nevada, Utah, and California, with radiation and weather data collection by local community representatives.

Steven J. Lawrence, National Nuclear Security Administration, Nevada Field Office Manager said, “The Nevada National Security Site (NNSS) looks forward to its continued association with the Nevada System of Higher Education. Through the Desert Research Institute and it’s cadre of internationally known scientists and research efforts, the NNSS will continue to benefit from the wealth of expertise they bring to the table.”

Although much of DRI’s work for the U.S. Department of Energy is directed to the NNSS, DRI also conducts research on other sites through its contract where the DOE Nevada Field Office has responsibilities. DRI performs research for DOE in collaboration with other organizations including Los Alamos, Livermore, and Sandia National Laboratories; with the U.S. Geological Survey; and with private sector companies including NSTec and Navarro.

For more information about DRI visit www.dri.edu

For more information about the NNSS visit http://www.nnss.gov/

###

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

New Technology Company Comes to Nevada to Focus on Water Quality

LAS VEGAS, Nev. (Apr. 19, 2017) — With support from WaterStart, Australia-based water technology company STAR Water Solutions announced plans to pilot a new project with researchers from the Desert Research Institute (DRI).

The project will utilize the company’s state of the art water treatment and reuse technologies that deliver proven, cost effective and efficient water filtration for urban stormwater, industrial mining and agricultural runoff and industrial waste water systems.

The partnership is the result of a connection made by the Governor’s Office of Economic Development during a trade mission to the Queensland Government in 2016.

With assistance from DRI scientists, STAR Water Solutions staff will work to characterize locally available materials in Nevada, identify filtration material performance efficacy and establish manufacturing distribution channels within the state for the development of recycled and sustainably procured bio-filters.

“We are really looking forward to showcasing our unique technologies in Nevada and furthering water innovation for the state,” said Chris Rochfort, CEO of STAR Water Solutions. “This is an opportunity for STAR Water to target large scale projects, with the help of DRI, that will focus on improving water quality in the state.”

The collaboration hopes to create new analytical practices, manufacturing opportunities, new beneficial uses for recycled materials, and advance water filtration system performance outcomes with significant environmental, social and economic results.

“Developing and testing innovative water quality management practices is a priority for researchers at DRI and the state of Nevada, and we welcome this opportunity to develop a new partnership with STAR Water Solutions,” said Alan Heyvaert, Ph.D, a limnologist and leading water quality expert at DRI. “Their advanced water filtration technology and global experience linked with our research capabilities demonstrates how science-driven technological innovation is growing new industries in Nevada.”

With operations across Australia, Singapore, Canada and the U.S., STAR Water Solutions has built a global network in which it provides systems and solutions that address major infrastructure challenges related to water and the environment.

“We are thrilled to welcome STAR Water to Nevada as part of this strategic partnership with DRI,” said Nate Allen, Executive Director of WaterStart. “Their innovative technology will contribute to local business growth and addressing water quality challenges in both Nevada and the U.S.”


International leaders in advanced bio-filtration and bio retention systems resulting from extensive, long term research & development, STAR Water Solutions provide “state of the art” treatment and reuse technologies that deliver proven, cost effective and efficient performance for urban stormwater, industrial, mining and agricultural runoff and industrial waste water systems. STAR Water holds an exclusive worldwide license for Reactive Filter Media™ technology. For more information, visit www.starwater.com.au.

Desert Research Institute (DRI), the nonprofit research arm of the Nevada System of Higher Education, is a world leader in environmental sciences through the application of knowledge and technologies to improve people’s lives throughout Nevada and the world. For more information about DRI please visit www.dri.edu.

WaterStart operates in a region of proven first adopters, sitting at the nexus of technology, research and economic development. WaterStart provides channels for innovation for various stakeholders and water resource managers; including: technology companies, management agencies and policy makers and provides services ranging from commercialization funding to business development. As it continues to bring together strategic resources and expertise, its core mission will create quality job growth and help diversify the economy of the region. For more information, visit www.waterstart.com

Celebrating over 15 years of science in the classroom

DRI Science Alive Program launches new brand, new tools for Nevada’s teachers

RENO, Nev. (Apr. 13, 2017) – Building on nearly two decades of science education and outreach across Nevada, the Desert Research Institute today announced a new brand and renewed focus for its preK-12 outreach program.

DRI’s Science Alive program – formerly known as Green Power – has expanded its reach to provide Nevada’s preK-12 educators with a comprehensive set of modern tools and resources focused on science-based, environmental education.

“Our mission with Science Alive is to extend the amazing science and innovation that happens every day at DRI into the classroom,” said Amelia Gulling, DRI Science Alive program administrator.

Science Alive provides inquiry-based STEM (science, technology, engineering, and mathematics) curriculum, classroom supplies, and professional trainings to any teacher in Nevada that is interested.

Green Boxes
Through its Green Boxes, self-contained teaching kits, Science Alive offers educators from any grade level a unit of lesson plans and all of the classroom and field supplies necessary to engage students in hands-on projects that foster critical thinking and problem solving skills.

Science Alive offers more than 100 Green Boxes with Next Generation Science Standards based lessons designed to enhance student literacy in various STEM subject areas – from the water cycle and soil science to the life cycle of garbage and harnessing the sun’s energy.

“Thanks to the generous support from our long-time program sponsors, such as NV Energy, we are able to offer Green Boxes as a completely free resource to any formal or informal educator in Nevada,” explained Gulling.

Since their inception in 2000, Green Boxes have reached over 65,000 students, in more than 400 schools, across every county in the state.

DRI Science Alive Program launches new brand, new tools for Nevada’s teachers

Reno, Nev. – Building on nearly two decades of science education and outreach across Nevada, the Desert Research Institute today announced a new brand and renewed focus for its preK-12 outreach program.

DRI’s Science Alive program – formerly known as Green Power – has expanded its reach to provide Nevada’s preK-12 educators with a comprehensive set of modern tools and resources focused on science-based, environmental education.

“Our mission with Science Alive is to extend the amazing science and innovation that happens every day at DRI into the classroom,” said Amelia Gulling, DRI Science Alive program administrator.

Science Alive provides inquiry-based STEM (science, technology, engineering, and mathematics) curriculum, classroom supplies, and professional trainings to any teacher in Nevada that is interested.

Green Boxes

Through its Green Boxes, self-contained teaching kits, Science Alive offers educators from any grade level a unit of lesson plans and all of the classroom and field supplies necessary to engage students in hands-on projects that foster critical thinking and problem solving skills.

Science Alive offers more than 100 Green Boxes with Next Generation Science Standards based lessons designed to enhance student literacy in various STEM subject areas – from the water cycle and soil science to the life cycle of garbage and harnessing the sun’s energy.

“Thanks to the generous support from our long-time program sponsors, such as NV Energy, we are able to offer Green Boxes as a completely free resource to any formal or informal educator in Nevada,” explained Gulling.

Since their inception in 2000, Green Boxes have reached over 65,000 students, in more than 400 schools, across every county in the state.

Teacher Trainings
Science Alive also offers a multitude of teacher trainings, professional development workshops, and field sessions centered on science and innovation.

As part of the STEM Stream at DRI – a career-long and lifelong continuum for STEM research, education, and application – Science Alive teacher trainings are designed to expand educators’ possibilities, promote professional networking, and often count toward educators’ continuing education credits and serve as in-service credit days from the Nevada Department of Education.

In early March, Science Alive partnered with Nevada State College and welcomed more than 30 teachers to explore Unmanned Air Systems (UAS) as a fun and engaging way to incorporate STEM into the classroom. Educators who attend this free training developed UAS curriculum that will be turned into a UAS Green Box for state-wide use next school year.

Community Partnerships
Originally developed to promote renewable energy technologies in Nevada’s schools, Science Alive has since secured a depth of community partners and program funding sponsors from across nearly off of Nevada’s key industries and business sectors.

“We are extremely proud to have helped DRI grow this tremendous community resource into the robust program it is today,” Mary Simmons, Vice President of Business Development and Community Strategy for NV Energy. “NV Energy has a strong tradition of community involvement and is committed to improving education at all levels in the communities where we live and work.”

Together, NV Energy customer donations and grants from the NV Energy Foundation have provided more than $1 million in resources to help Science Alive promote renewable energy preK-12 education and conscious living practices since 2000.

Science Alive will continue its advocacy of renewable energy and conservation through its EnergySmart Education Series – which will provide teacher trainings, Green Boxes, school support, field trips, and a speaker series for preK-12 educators with an emphasis on energy, energy efficiency, and related topics.

For more information on DRI’s Science Alive program visit sciencealive.dri.edu

Science Alive also offers a multitude of teacher trainings, professional development workshops, and field sessions centered on science and innovation.

As part of the STEM Stream at DRI – a career-long and lifelong continuum for STEM research, education, and application – Science Alive teacher trainings are designed to expand educators’ possibilities, promote professional networking, and often count toward educators’ continuing education credits and serve as in-service credit days from the Nevada Department of Education.

In early March, Science Alive partnered with Nevada State College and welcomed more than 30 teachers to explore Unmanned Air Systems (UAS) as a fun and engaging way to incorporate STEM into the classroom. Educators who attend this free training developed UAS curriculum that will be turned into a UAS Green Box for state-wide use next school year.

Community Partnerships
Originally developed to promote renewable energy technologies in Nevada’s schools, Science Alive has since secured a depth of community partners and program funding sponsors from across nearly off of Nevada’s key industries and business sectors.

“We are extremely proud to have helped DRI grow this tremendous community resource into the robust program it is today,” Mary Simmons, Vice President of Business Development and Community Strategy for NV Energy. “NV Energy has a strong tradition of community involvement and is committed to improving education at all levels in the communities where we live and work.”

Together, NV Energy customer donations and grants from the NV Energy Foundation have provided more than $1 million in resources to help Science Alive promote renewable energy preK-12 education and conscious living practices since 2000.

Science Alive will continue its advocacy of renewable energy and conservation through its EnergySmart Education Series – which will provide teacher trainings, Green Boxes, school support, field trips, and a speaker series for preK-12 educators with an emphasis on energy, energy efficiency, and related topics.

For more information on DRI’s Science Alive program visit sciencealive.dri.edu