New NV Energy Foundation Grant Will Support Wildfire Preparedness in Nevada

New NV Energy Foundation Grant Will Support Wildfire Preparedness in Nevada

burning wildfire

March 30, 2022
RENO, NEV.

Wildfire Preparedness
Weather-Fire-Smoke Model
Fire Mitigation

New NV Energy Foundation Grant Will Support Wildfire Preparedness in Nevada

Funding will boost development of DRI‘s advanced weather-fire-smoke model

Check Presentation NV Energy Foundation

Representatives from NV Energy and DRI gathered Wednesday, March 30, 2022 at the DRI campus to announce a new grant that will provide $150,000 to support the development of a Weather and Research Forecast advanced modeling tool. 

Credit: DRI. 

Reno, Nev. (March 30, 2022) – As the climate warms, wildfires in the Sierra Nevada are happening at unprecedented sizes and intensities, threatening communities and resources throughout Nevada and California. For fire managers trying to understand and predict fire behavior, access to accurate information for decision-making has never been more important.

A generous grant from the NV Energy Foundation will provide $150,000 to support DRI’s development of a Weather and Research Forecast advanced modeling tool that simulates weather, fire, and smoke for firefighting and prescribed fire operations. Forecasts and simulations produced by this model will be available to NV Energy’s fire mitigation team, and other professionals from the prescribed fire and air quality communities in Nevada and California through the work of the California and Nevada Smoke and Air Committee (CANSAC).

“We are committed to protecting our customers and the environment from the increasing risks of natural disasters, which include wildfires,” said Doug Cannon, NV Energy president and chief executive officer. “The NV Energy Foundation is proud to support DRI in the development of this technology that will help firefighters better assess fire risk and keep our communities safe.”

Funds from the new NV Energy Foundation grant will be used to expand the current high-performance computer system that is used by CANSAC. The system will provide an interface where users such as prescribed fire managers can conduct simulations of fire spread and smoke behavior.

Caldor Fire Simulation

Screenshot of a simulation of the Caldor Fire created with the weather-fire-smoke model. Green lines indicate wind direction, red and yellow area indicates fire perimeter, and gray cloud represents smoke.  

Credit: Adam Kochanski/San Jose State University and Tim Brown/DRI. 

The model will allow for risk assessment of specific locations by modeling different burn scenarios, help meteorologists identify small-scale wind flows that could have adverse effects on fire spread and behavior, and provide critical air quality forecasts for wildfires or burn day decisions. Simulations can be run for near future forecasting (a few days out) or longer-term scenario modeling for projects that might occur a year or more into the future.

“This tool will be useful to wildfire fighting operations as well as for prescribed fire planning, which is essential to getting some of our fire-adapted ecosystems back into balance,” said Tim Brown, Ph.D., director of DRI’s Western Regional Climate Center. “By supporting the development of this tool, the NV Energy Foundation is providing a great resource to fire managers in Nevada and California and helping to ensure the safety of firefighters and communities across these two states.”

“With this generous grant, the NV Energy Foundation will play a key role in developing new technology that will be used to solve real-world problems in fire mitigation and fire safety,” said DRI President Kumud Acharya, Ph.D. “This project is an amazing example of how community organizations like NV Energy can partner with DRI scientists to develop solutions to the problems that face our society and environment.”

This project is supported by additional funds from the State of Nevada’s Capacity Building Program and DRI internal funding.

###

About DRI

The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

About the DRI Foundation

The DRI Foundation serves to cultivate private philanthropic giving in support of the mission and vision of the Desert Research Institute. Since 1982, DRI Foundation trustees have worked with DRI benefactors to support applied environmental research to maximize the Institute’s impact on improving people’s lives throughout Nevada, the nation, and the world. 

About the NV Energy Foundation

NV Energy maintains the NV Energy Foundation, a 501c3, to support its philanthropic efforts. Through direct grants, scholarships and employee grant programs, the NV Energy Foundation actively supports improvements in the quality of life in NV Energy’s service territories. Information about the NV Energy Foundation is available at nvenergy.com/foundation.

New Study Points to Increase in High-risk Bushfire Days in Australia

New Study Points to Increase in High-risk Bushfire Days in Australia

Photo credit: Flickr photo by Fvanrenterghem. Shared under Creative Commons license 2.0

DRI Research Highlight

Victoria, Australia is already one of the most bushfire-prone areas in the world, and the number of high-risk days may triple by the end of the century, according to a new study in the International Journal of Wildland Fire. The study team included Tim Brown, Ph.D., research professor of climatology and director of the Western Regional Climate Center at the Desert Research Institute (DRI) in Reno, as well as scientists from Australia and other parts of the US. Brown contributed to the success of the project by collecting information on user needs, overseeing the creation of the historical dataset used in the analysis, and co-developing the methodology used to statistically downscale climate models. He also contributed to results analysis and co-authored the paper.

The full study, Downscaled GCM climate projections of fire weather over Victoria, Australia. Part 2*: a multi-model ensemble of 21st century trends, is available from the International Journal of Wildland Fire : https://www.publish.csiro.au/wf/WF20175

The full news release from CFA is below.

High-risk Bushfire Days Set to Soar This Century

Reposted from CFA

The number of high-risk bushfire days could triple in some parts of Victoria by the end of the century, according to new climate research by CFA and international research bodies.

The research, published this month in the International Journal of Wildland Fire, found that under different emissions scenarios both mean and extreme fire danger are expected to increase in Victoria.

Statewide, research modeling indicates a 10 to 20 percent increase in extreme Forest Fire Danger Index, with the greatest change projected in the northwest region.

However, the greatest relative change in the number of ‘Very High’ days per year will be in central and eastern parts of the state where there is a projected doubling and tripling, respectively in the number of ‘Very High’ days.  Report co-author, CFA Manager Research and Development Dr. Sarah Harris, said scenarios used in the research show increased temperature, caused by human-induced climate change, to be the main driver of heightened fire danger.

“Changes in temperature, humidity, and rainfall during spring and early summer mean the fire season will continue to start earlier and run longer. As a flow-on effect, springtime opportunities for prescribed burning could reduce,” she said.

CFA Chief Officer Jason Heffernan said he was proud of CFA’s robust research program, which he said brought further understanding of the impacts of climate change in the context of firefighting.

“As firefighters, we see the effects of these longer and more severe fire seasons and it’s important that we turn our minds towards what firefighting looks like in the not-too-distant future,” he said.

“CFA is undertaking work to identify challenges brought on by climate change and increased fire risk, and ways to solve them through adaptation and mitigation.

“CFA also proudly works to reduce our own greenhouse emissions, through initiatives such as increasing our use of rooftop solar and the number of hybrid vehicles in the fleet.”

CFA Manager Research and Development Sarah Harris co-authored the research with researchers Scott Clark (School of Earth, Atmosphere and Environment, Monash University), Timothy Brown (Desert Research Institute in Nevada, USA), Graham Mills (Monash University) and John T. Abatzoglou (School of Engineering, University of California).

The research was funded through Safer Together, a Victorian approach to reducing the risks of bushfire through fire and land agencies such as CFA, Forest Fire Management Victoria and Parks Victoria working together with communities, combining in-depth local knowledge with the latest science and technology to reduce bushfire risk on both public and private land.

Forest Fire Management Victoria Chief Fire Officer Chris Hardman said partnerships with community and agencies such as CFA and FRV help ensure we are unified in emergency preparedness and response to keep the community and environment safe.

“We know that Victoria is one of the most bushfire-prone areas in the world. Climate change is increasing the risk bushfires pose to our communities, our critical infrastructure, and our environment,” he said.

“That’s why our strategic approach to managing bushfire risk is based on the best evidence available, such as this research.

“We have a 365-day approach to fuel management, more mechanical treatment, and increasing capacity to contain bushfires at first attack. We are also prioritizing empowering Traditional Owners to lead self-determined cultural fire practices on country.”

New study identifies atmospheric conditions that precede wildfires in the Southwest

New study identifies atmospheric conditions that precede wildfires in the Southwest

Reno, Nev. (January 3, 2018): To protect communities in arid landscapes from devastating wildfires, preparation is key. New research from the Desert Research Institute (DRI) in Reno may aid in the prevention of large fires by helping meteorologists and fire managers in the Southwestern U.S. to forecast periods of likely wildfire activity.

Each summer, from June through September, a weather pattern called the North American monsoon brings thunderstorms to the Southwestern U.S., with lightning that often sparks wildfires.

The new study, which published in the International Journal of Climatology, examined twenty common weather patterns that occur during the North American monsoon season, and identified relationships between certain weather patterns and times of increased fire activity.

One of the most problematic weather patterns, the team learned, was when dry and windy conditions gave way to lightning storms in May and June – a time when fuels tended to be at their driest and monsoon rains had not yet soaked the region with added moisture. When lightning storms were followed by another hot, dry, windy period, increased fire activity was even more likely.

“A lot of fire meteorologists know from experience that this is how things happen, but our study actually quantified it and showed how the patterns unfold,” said lead author Nick Nauslar, Ph.D., who completed this research while working as a graduate student at DRI under Tim Brown, Ph.D. “No one had ever really looked at large fire occurrence in the Southwest and how it related to atmospheric patterns.”

To identify problematic weather patterns, Nauslar and his team looked at monsoon season weather data collected from April through September over the 18-year period from 1995-2013. They then classified wildfire activity over the same period into days or events that were considered “busy” by fire managers in their study area, and used an analysis technique called Self-Organizing Maps to detect relationships between the two datasets.

In addition to identifying relationships between specific weather patterns and fire activity, their analysis also looked for patterns in wildfire occurrence and fire size throughout the season. Analysis of more than 84,000 wildfires showed that although July was the month that the most wildfires occurred, wildfires that occurred during the month of June (prior to the arrival of much monsoonal moisture) were more likely to develop into large fires. In July and August, when the heaviest monsoonal precipitation typically occurs, the percentage of fires that developed into large fires decreased.

“Our goal with this study was to provide fire weather meteorologists in the region with information to help inform fire forecasts, and I think we were able to identify some important patterns,” said Brown, Director of the Western Regional Climate Center at DRI.

Nauslar, who is now employed as a mesoscale assistant and fire weather forecaster for the National Oceanic and Atmospheric Administration (NOAA) Storm Prediction Center in Norman, Oklahoma, hopes that the findings of this study will help fire managers in the Southwest to proactively identify periods when wildfires are more likely to occur, and to allocate firefighting resources accordingly.

“I think a lot of what we learned confirms forecaster experience about the types of atmospheric patterns that are problematic with regard to wildfire occurrence in the Southwest,” Nauslar said. “I hope that people in operations can really use this information, and help refine it and build upon it.

Other DRI scientists who contributed to this research included Benjamin Hatchett, Ph.D., Michael Kaplan, Ph.D., and John Mejia, Ph.D. The full study, titled “Impact of the North American monsoon on wildfire activity in the southwest United States,” is available online from the International Journal of Climatology: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5899

 

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. Learn more at www.dri.edu, and connect with us on social media on FacebookInstagram and Twitter. 

Northern Nevada Science Center
2215 Raggio Parkway
Reno, Nevada 89512
PHONE: 775-673-7300

Southern Nevada Science Center
755 East Flamingo Road
Las Vegas, Nevada 89119
PHONE: 702-862-5400