12 Days of DRI: 2018 in Review

12 Days of DRI: 2018 in Review

It’s safe to say that 2018 has been a great year for DRI. From launching new programs to engage community members in science and technology to making new strides in our core research areas, we’re proud of what we’ve accomplished, and we’re looking forward to all that next year may hold. For our final blog post of the year, we review twelve (but by no means all) of our 2018 highlights, originally posted as a series on our Instagram, @DRIscience.


Sonora Pass, Oct 2018.

Day 1: In early 2018, DRI researchers Ben Hatchett, Ph.D., and Dan McEvoy, Ph.D., published research investigating snow droughts, which have become increasingly common in the Sierra Nevada and Cascade mountains in recent years, as warming temperatures push snow lines higher up mountainsides and cause more precipitation to fall as rain. Their findings traced how snow droughts evolve over a winter season and impact local watersheds and economies.

Now, McEvoy, Hatchett, and collaborator Justin Chambers are working to develop this research further by creating tools that can help scientists track snow droughts and share that information with resource managers.

Read more about snow droughts.


Solar Roller Teacher Training, December 2018. Day 2: In February, the DRI Science Alive Program, the PreK-12 education and outreach arm of DRI, collaborated with the Nevada Museum of Art to host the first annual Nevada Steam Conference, which brought together nearly 200 educators, administrators, and presenters from across the state to discuss best practices and new approaches to education in STEAM (science, technology, engineering, arts, and math).

In 2019, the Nevada STEAM Conference will happen on Saturday, February 2nd.

Learn more and register.


Day 3: This spring, viewers around the world fell in love with the great horned owl family that nested on an office building at our Reno campus. Their nesting situation was unusual, never before recorded by scientists: a trio of owls, two female and one male, tending two nests side by side. In coordination with the Nevada Department of Wildlife, DRI installed a nest camera and live-streamed the video to YouTube so that anyone could observe this rare nesting situation. The feed quickly went viral and became a news sensation, attracting viewers from around the world and coverage by outlets such as National Geographic and the Audubon. By the time the two owlets successfully fledged in May and the live stream was turned off, the video logged over 20 million hours of viewing.


Dr. Monica Arienzo works on a 30,000 year old ice core in the ice lab at Desert Research Institute, in Reno, Nev., on Wednesday, Feb. 21, 2018. Photo by Cathleen Allison/Nevada MomentumDay 4: This spring, the researchers in DRI’s ultra-trace ice core laboratory published remarkable new findings, tracing the rise and fall of the Roman economy through lead deposits in Greenland ice cores. The team of scientists, archaeologists, and economists from DRI, the University of Oxford, NILU – Norwegian Institute for Air Research, and the University of Copenhagen used ice samples from the North Greenland Ice Core Project (NGRIP) to measure, date, and analyze European lead emissions that were captured in Greenland ice between 1100 BC and AD 800.

Their results provided new insight for historians about how European civilizations and their economies fared over time, and the research captured the attention of media outlets around the world, including the New York Times, the Atlantic, and the Economist. Just this month, the team’s research was listed as one 2018’s top science stories in Discover Magazine.

Read the press release and full article.


A general view of activities at the annual open house at the Desert Research Institute Wednesday, May 4, 2017 in Las Vegas. (Photo by David Becker)Day 5: In May, DRI hosted the third annual May Science Be with You open house as part of the Las Vegas Science and Technology Festival. Nearly 3,000 community members visited DRI’s Las Vegas campus for lab tours, hands-on activities, special presentations, and Star Wars themed fun.

Stay tuned for more details on the 2019 May Science Be with You open house—rumor has it there may one more than one open house, and one in Reno, too!

View the photo gallery from the 2018 event.


Brittany Kruger works at Desert Research Institute on May 3, 2018 in Las Vegas. Photo by David Becker/Nevada MomentumDay 6: This June, DRI published its first ever Research Highlights magazine, a revisioning of our Annual Report to showcase engaging stories about research projects and programs at DRI. This fall, the magazine was recognized with awards by Public Relations Society of America chapters in Reno and Las Vegas!

Read the magazine.

 


Markus Berli works with soil sample.Day 7: This summer, DRI researchers Markus Berli, PhD, and Rose Shillito published research with colleagues from UC Merced about how soils respond to low-severity fires like prescribed burns. Their findings indicate that prescribed burns may do more damage to soils than previously believed, sometimes resulting in long-term damage to soil structure and increasing its susceptibility to erosion. It’s not yet clear whether the negative impacts on soil associated with these low-severity fires outweigh the positives (like recycling nutrients back into the soil and getting rid of overgrown vegetation), but the research team hopes that their work will help inform land managers as they manage wildfires and plan prescribed burns.

Read the press release and access the research papers.


DRI tent at the Tahoe Summit, Lake Tahoe, August 2018.Day 8: In August, DRI participated in the 22nd Annual Tahoe Summit, a yearly gathering of federal, state, and local leaders dedicated to the goal of restoring and sustaining Lake Tahoe as one of our most precious environmental treasures. DRI showcased a variety of research projects impacting the Lake Tahoe Basin, including research using unmanned aircraft systems (UAS) to monitor wildfires and stormwater management.

Check out a round-up of DRI projects related to Lake Tahoe.


Interns participate in the first ever DRI Cybersecurity Internship Program. Fall 2018.Day 9: This fall, sixteen interns began the first ever DRI Cybersecurity Internship Program, a semester-long program that provides training, certification, and hands-on experience for individuals interested in obtaining marketable job skills related to cybersecurity in collaboration with the SANS Institute, a world-renowned internet security research and education organization. All semester long, the interns have been working with DRI’s Chief Information Security Officer, Brandon Peterson, to gain hands-on experience building cyber-infrastructure using best practices from the National Institute of Standards and Technology (NIST).

Learn more about the program and meet the interns.


Science Distilled, January 2018.Day 10: Fall of 2018 marked the close of the third season of Science Distilled, events presented by DRI and the Discovery Museum that make cutting-edge science approachable through presentations on current and curious topics held at hip locations in a social atmosphere. Topics this year ranged from genetics and heart health to cybersecurity and resilience, and each of the six talks attracted dozens of science enthusiasts around the Reno area.

Stay tuned for news on the 2019 season! There’ll be six fascinating talks, plus surprise science content coming soon.


Fire and smoke plume.Day 11: We at DRI are especially proud of how our researchers work to bring scientific knowledge to the forefront of society by engaging with reporters, policymakers, and community members. For example, Tim Brown, Ph.D., Director of the Western Regional Climate Center at DRI, recently worked with SciLine—a service that connects reporters to academic and industry experts—to produce an in-depth catalogue of information on wildfire science for journalists. Free and open to the public, this scientific information can help provide the expertise and context needed to make sense of scientific topics in the headlines.

Check out the summary of wildfire information and a recorded media briefing by Brown and other wildfire experts.


Images from a Desert Research Institute open house on May 3, 2018 in Las Vegas. Photo by David Becker/Nevada MomentumDay 12: As we conclude our twelve days of reflection on the incredible year we’ve had, we’d be remiss if we didn’t acknowledge one of the key things that’s made it great: YOU! Whether through citizen science projects, community outreach events, collaborations on research projects, or just following along with us online and on social media, you are such an important part of the DRI team. Thank you for being here for science, today and every day.

Meet graduate researcher Meghan Rennie

Meet graduate researcher Meghan Rennie

Meet Meghan Rennie, a Master’s student in atmospheric sciences. At DRI, Rennie is working with Dr. Hans Moosmüller from the Division of Atmospheric Science (DAS) to study aerosols and mineral dust for their optical properties that effect Earth’s energy budget.


What brought you to DRI?
After completing my bachelor’s degree at UNR, I am continuing on into my Master’s and my Ph.D. at UNR. The Desert Research Institute offers students access to amazing faculty and research opportunities at one of the world’s leading research organizations.

What are you studying?
I am studying aerosols (small particles of solid and liquid that are suspended in the atmosphere) and mineral dust for their optical properties that effect  Earth’s energy budget. These properties give insight into how the local and global climate is being affected by the presence of dust and aerosols.

Meghan Rennie, a Master's student in atmospheric sciences at DRI.

Meghan Rennie, a Master’s student in atmospheric sciences at DRI.

What research projects are you working on? And who at DRI are you working with?
I am working primarily with my graduate advisor, Hans Moosmüller. We are working on publishing a paper on particles of iron oxide, the most predominant mineral in most soils on Earth, that have been suspended in water to determine how much light and energy they absorb and scatter. We are also a project to characterize the optical properties of aerosols that are emitted from the burning of cheatgrass. These optical properties are important to clarify the role smoke from cheatgrass plays in changing the Earth’s energy budget.

What are your short-term and long-term goals while at DRI?
My short-term goal is to publish and get my masters finished. My long-term goal is to complete my Ph.D. at UNR and DRI while building a solid foundation in research.

Tell us about yourself. What do you do for fun?
When I’m not working or doing homework, I love to go hiking with my husband and our dogs and spending time with my family and friends. I also love to bake and try to read as much as I can.

Meghan Rennie, a Master's student in atmospheric sciences at DRI.

Meghan Rennie, a Master’s student in atmospheric sciences at DRI.

Q&A with AGU presenter Christine Albano

Q&A with AGU presenter Christine Albano

Christine Albano is a hydrologist and graduate student pursuing her Ph.D. She’ll be attending AGU for the first time this year.

DRI: In a couple of sentences, what is the ‘plain English’ summary of what you are presenting at AGU?

Christine Albano: Through our research, we are examining how the nature and magnitude of atmospheric river impacts vary across the western US in terms of contributions to snowpack, soil moisture, and river flows. We further describe the relative roles of atmospheric and land surface conditions during atmospheric river storms in determining how precipitation is partitioned into soil moisture, river flow, and snowpack.

DRI: What are you most looking forward to at AGU this year? What do you hope to learn, or who do you hope to connect with?

CA: This is my first AGU, so I’m looking forward to (and bracing for!) the spectacle of 25,000+ scientists gathering all in one place. I’m also really looking forward to connecting with others from across the country who are working on similar research questions and to the exposure to research topics that I don’t even know exist yet.

DRI: There’s a challenge on Twitter right now for AGU presenters called #HaikuYourResearch that asks scientists to communicate their research in the form of a Haiku, a 3-line poem that uses just 5 syllables in the first line, 7 syllables in the second line, and 5 syllables in the final line. Would you be interested in attempting a haiku about your research?

CA:
Rivers in the sky
Where will the rainwater go?
The VIC model tells

DRI: The theme of this year’s meeting is “What Science Stands For.” From your perspective, what does science stand for?

CA: To me, science stands for the pursuits of truth, understanding, and discovery. It stands for the progress of humankind, understanding the universe in which we live, and our ability to create.

Meet Christine at her AGU poster, “Spatial and Temporal Variability of Atmospheric River Hydrologic Impacts across the Western U.S.,” happening Monday, December 10th during the morning session. (Session H11V-0754 in the program.)

###

To learn more about Christine’s work, visit her Featured Graduate Student profile, available here.

This Q&A is part of a series of profiles of DRI scientists who will be participating in the 2018 AGU Fall Meeting, to be held in Washington DC during the week of December 10th. Learn more about this annual meeting of 24,000 scientists from a wide range of disciplines here: https://fallmeeting.agu.org/2018/.

Nevada Solar Nexus Project: 2013-2018

Nevada Solar Nexus Project: 2013-2018

“I knew our research institutions were doing solar energy research, but I didn’t realize how much they were doing,” said Nevada State Assemblyman Chris Brooks in welcoming attendees to the “Solar Nexus: Nevada’s Research Institutions Supporting our Community” panel event at the Springs Preserve on November 14th.

This panel discussion, attended by members of the Las Vegas community, featured researchers from DRI and the University of Nevada, Las Vegas (UNLV)–Eric Wilcox, Ph.D. (DRI), Gayle Dayna, Ph.D. (DRI), Dale Devitt, Ph.D. (UNLV), and Bob Boehm, Ph.D. (UNLV)–all of whom have who have spent the last five years working on the Solar Energy, Water, and Environment Nexus in Nevada project, a wide-ranging research project sponsored by the Nevada System Sponsored Programs and Established Program to Stimulate Competitive Research (EPSCoR).

The Solar Nexus project (for short), which also includes researchers from University of Nevada, Reno, began in June 2013, its focus the nexus between solar energy generation, Nevada’s limited water resources, and the state’s fragile environment. Existing industrial solar panel models require water to keep them producing solar power at the rate at which they were intended and alter their surrounding environments, so research is needed to provide solutions to these potential barriers to widespread solar energy adoption in desert environments like Nevada.

Dr. Robert Boehm and Dr. Jacimaria Batista of UNLV describe the original idea for the Solar Nexus project.

The Solar Nexus project has involved a wide range of research over the last five years, all of it collaborative—48 faculty, 14 technical staff, and over 30 graduate students from DRI, UNLV, and UNR have been involved over the five years of the project. Research included but was not limited to the testing of dry cooling methods for solar panels to conserve water resourcesinvestigating the impact of panels on rainwater infiltration into soilsexamining the possibilities for desert soil restoration, and studying the factors that impact solar power generation and may cause it to fluctuate, like cloud cover.

All areas of study pursued by the project interweaved the goals of promoting economic diversification in Nevada, minimizing the negative environmental impacts of solar energy development while achieving maximum benefits, and developing the cyberinfrastructure and diverse, educated workforce needed to sustain the renewable energy industry in Nevada.

“The Solar Nexus project has put Nevada on the map with regard to the engineering and research related to solar energy,” said Dana, DRI project director and Nevada EPSCoR Director.

During the panel discussion, Dana and her fellow panelists were quick to point out, however, that research goals were not the only ones met by the project: the economic and workforce development outcomes of the project were also significant.

Photo of speakers at the Solar Nexus panel event held at the Springs Preserve in Las Vegas.

Brian Beffort, Director of the Sierra Club, Toiyabe Chapter (standing far left) moderated the discussion at the Solar Nexus panel event held at the Springs Preserve in Las Vegas. Speakers, from left: Eric Wilcox, Dale Devitt, Bob Boehm, and Gayle Dana. November 14, 2018.

“Workforce development is a really big part of the Solar Nexus project, and we have a number of different mechanisms built in to develop this pipeline of educators and students,” said Dana. The project helped create new faculty and graduate student positions at each of the state’s research institutions, filling out each institution in terms of research area expertise related to solar energy that hadn’t been represented in the past. In all, nearly forty students graduated with advanced degrees related to renewable energy after working on the Solar Nexus project.

Beyond building capacity in the research expertise of Nevada’s research institutions, the project also helped expand the possibilities for commercialization of new technologies related to solar energy. This entrepreneurial activity has a ripple effect.

“Universities are an economic driver for the community,” explained Wilcox, associate research professor of climatology at DRI and solar forecasting researcher on the Solar Nexus project. “Economic growth draws on the intellectual production of faculty at our research institutions.”

With this project coming to a close this year, researchers are looking ahead to the next round of EPSCoR funding and another project that can build research excellence and drive economic development. EPSCoR is a program run by the National Science Foundation that works to stimulate research capacity and competitiveness in states that receive comparatively less federal funding. Nevada is one of 28 states, in addition to Puerto Rico, Guam, and the U.S. Virgin Islands, eligible for EPSCoR funding.

To hear from DRI’s Markus Berli about the Solar Nexus project on the Shades of Green radio show, hosted by Green Alliance, visit: http://www.greenalliancenv.org/blog/nexus-of-water-and-energy-usage.

To browse an archive of stories about the Solar Nexus project’s research and impact for the state, visit: https://solarnexus.epscorspo.nevada.edu/about/feature-articles/.

Michael Dettinger among 2018 class of AAAS lifetime fellows

Michael Dettinger among 2018 class of AAAS lifetime fellows

RENO, Nev. (Nov. 28th, 2018) – Michael Dettinger, Ph.D., a leading climate researcher in Nevada, has been named a lifetime Fellow of the American Association for the Advancement of Science (AAAS) in honor of his remarkable achievements in advancing scientific understanding of the connections between climate and water resources in the Western U.S. Dettinger is one of 416 AAAS members receiving this honor this year, and one of just ten in the Atmospheric and Hydrospheric Sciences section.

“I am both very honored and quite surprised by this turn of events,” Dettinger said humbly of the recognition. “Make no mistake, this kind of honor is rarely for a one-man show. I have always been eager to pitch in however I can and to collaborate with really fine scientists.”

Dettinger holds several professional and academic appointments: he is a senior research hydrologist for the U.S. Geological Survey’s National Research Program, a resident scientist at the University of Nevada Reno, a research associate of the Scripps Institution of Oceanography, and a distinguished visiting researcher at the Desert Research Institute (DRI).

Over the course of his career, Dettinger has monitored and researched the hydrology, climates, and water resources of the West, focusing on regional water resources, watershed modeling, causes of hydro-climatic variability and extremes (including atmospheric rivers and droughts), and climate change influences.

“Looking forward, I figure that the best use of this kind of honor is to see whether it can be used as a wedge for helping better science and better things happen generally,” said Dettinger.

This year’s Fellows, who represent a broad swath of scientific disciplines, were selected for diverse accomplishments that include pioneering research, leadership within their field, teaching and mentoring, fostering collaborations and advancing public understanding of science. They will be formally recognized at the 2019 AAAS Annual Meeting in Washington D.C., where they will be presented with an official certificate and the AAAS Fellows’ gold and blue rosette pin, the colors of which represent the fields of science and engineering respectively.

AAAS’ annual tradition of recognizing leading scientists as Fellows dates to 1874. Since then, AAAS has honored distinguished scientists such as astronomer Maria Mitchell, inventor Thomas Edison, chemist Linus Pauling, and computer scientist Grace Hopper. Four of the 2018 Nobel Prize laureates – James Allison, Arthur Ashkin, Frances Arnold, and George Smith – are also AAAS elected Fellows.

The full list of 2018 Fellows will be published in the Nov. 29 issue of Science and is available online with the original AAAS press release: https://www.aaas.org/news/aaas-honors-accomplished-scientists-2018-elected-fellows.

Andrea Korte of the AAAS Office of Public Programs contributed to this release.

Q & A with AGU Presenter Rose Shillito

Q & A with AGU Presenter Rose Shillito

Rose Shillito is a hydrologist and graduate student researcher working with Markus Berli, Ph.D., associate research professor of environmental science. Rose has worked at DRI since 2011, and she plans to defend her doctoral dissertation at UNLV and earn her Ph.D. in geosciences this fall.

DRI: In a couple of sentences, what is the ‘plain English’ summary of what are you presenting at AGU? 

Rose Shillito: Fire can cause soils to become water repellent—water will not spontaneously enter the soil. We have developed a physically-based model to understand and predict the effect of soil water repellency on infiltration, thus on the potential for post-fire flooding and erosion.

(Rose was recently featured by the UNLV Foundation for her work on post-fire water repellency. Read the article here: https://www.unlv.edu/news/article/trickle-down-effect.)

DRI: What are you most looking forward to at AGU this year? What do you hope to learn, or who do you hope to connect with? 

RS: At AGU, I like to get an overview of research in my specific topic, but also get a general overview of research directions and methods in my field (hydrology). I get a chance to connect with colleagues and make new connections with other researchers.

DRI: The theme of this year’s meeting is “What Science Stands For.” From your perspective, what does science stand for? 

RS: Currently, to me, science is about answering questions.

Meet Rose at her AGU poster session, “Effective Infiltration Measurements for Fire-Affected Water-Repellent Soils,” happening Tuesday, December 11th during the afternoon session. (Session H23L-2548 in the program.)

This Q&A is part of a series of profiles of DRI scientists who will be participating in the 2018 AGU Fall Meeting, to be held in Washington DC during the week of December 10th. Learn more about this annual meeting of 24,000 scientists from a wide range of disciplines here: https://fallmeeting.agu.org/2018/.

Graduate student Yang Han receives Young Algae Researcher Award

Graduate student Yang Han receives Young Algae Researcher Award

DRI graduate student Yang Han, fifth from left, received a Young Algae Researcher Award in October.


 

November 5, 2018 (Reno, Nevada): Desert Research Institute (DRI) graduate student Yang Han was one of six student scientists to be honored with a Young Algae Researcher Award at the 2018 Algae Biomass Summit in The Woodlands, Texas in October.

Han, who received first place for outstanding research in algae engineering, is a Ph.D. student in the atmospheric sciences program. He is currently working under DRI faculty advisor S. Kent Hoekman, Ph.D., to convert algae into biofuel using a high temperature, high pressure thermochemical process known as hydrothermal liquefaction.

There are many potential benefits of using algae as a source of biofuel, Han says.

“Compared with other terrestrial biomass feedstock, algae won’t compete for resources with food production, and will have less impact on land use change and biodiversity,” Han explained. “It can be cultivated in diverse environments – fresh water, waste water, and salt water. Algae also has great potential to rapidly recycle or sequester carbon dioxide from the atmosphere.”

Yang Han works in the energy lab at Desert Research Institute, in Reno, Nev., on Wednesday, Feb. 21, 2018. Photo by Cathleen Alison/Nevada Momentum.

Yang Han works in the energy lab at Desert Research Institute, in Reno, Nev., on Wednesday, Feb. 21, 2018.
Photo by Cathleen Allison/Nevada Momentum.

The Young Algae Researcher Awards recognize outstanding research by early-career scientists using algae to address challenges in energy, human health, climate change, agriculture and other fields. A panel of  judges evaluated more than 100 posters based on six key criteria: presentation, methodology, data analysis, poster integrity and the presentation of the poster by the presenter him or herself.

“I felt very honored to receive this award, and look forward to continuing my research in this area,” Han said.


For more information on the Young Algae Researcher Award, visit: https://algaebiomass.org/blog/10384/abo-announces-six-winners-young-algae-researcher-awards-2018-algae-biomass-summit/

Meet Graduate Researcher Nic Beres

Meet Graduate Researcher Nic Beres

Meet Nic Beres, a Ph.D. student in atmospheric sciences. At DRI, Beres is working with Dr. Hans Moosmüller from the Division of Atmospheric Science (DAS) in Reno to study the mechanisms by which light-absorbing impurities such as dust reduce surface reflectance of snow and ice.


 

What brought you to DRI?
I began my master’s degree in atmospheric science through DRI after working in the gaming industry here in Reno. Instead of helping to develop ways to trick people into losing their money behind a slot machine, I wanted to learn more about the natural environment and contribute to a greater good through some subset of climate science. Growing up in the Reno/Tahoe area, DRI was the perfect fit to satisfy this desire to learn more.

What are you studying?
For my Ph.D., I am working to better understand the mechanisms by which light-absorbing impurities reduce surface reflectance of snow and ice. These impurities can include aerosol such as mineral dust or black/brown carbon from combustion processes, or biological material like snow algae.

Graduate student Nic Beres conducts field research on surface reflectance of snow and ice. February 2018.

Graduate student Nic Beres conducts field research on surface reflectance of snow and ice. February 2018.

What research projects are you working on? And who at DRI are you working with?
I am primarily working alongside my graduate advisor, Hans Moosmüller. Together, we designed an experimental solution to artificially deposit aerosol of known properties onto the snow surface to derive its incremental reflectance-reducing effect. We can then compare those results to those predicted through modeling. Additionally, I am exploring the lesser-known effect that brown carbon aerosol – which is emitted through combustion processes like wildfire – has on the snowpack. I find myself spending as much time in the field as I do in the lab or behind a computer, so I feel lucky to be where I am.

What are your short-term and long-term goals while at DRI?
Short term: publish.
Long term: publish.

Tell us about yourself. What do you do for fun?
Like many staff, students, and researchers here at DRI, I find myself getting into the mountains. I love rock climbing, hiking, and skiing. I also enjoy photography, travel, and spending time with family, friends, and others that inspire and explore with me.

In his free time, graduate student Nic Beres enjoys spending time in the mountains.

In his free time, graduate student Nic Beres enjoys spending time in the mountains.

 

Native Waters on Arid Lands project holds DRI Youth Day and Tribal Summit

Native Waters on Arid Lands project holds DRI Youth Day and Tribal Summit

On a Monday morning in mid-October, several small groups of students from Pyramid Lake Junior/Senior High School gathered around tables inside of a conference room at the Desert Research Institute in Reno, sketching ideas, visions, and plans of what they want life on Earth to look like for future generations.

Schuyler Chew, a University of Arizona graduate student who is currently studying climate change resilience and vulnerability with the Pyramid Lake Paiute Tribe, encouraged the students to incorporate indigenous language, words, drawings, maps, poems, and stories into their drawings.

“Enlightenment. Growth. Water is life,” one group of students wrote on their poster paper, with key words and themes surrounding a drawing of Pyramid Lake. Another group sketched native wildlife and buildings outfitted with solar panels.

A Youth Day participant sketches his vision for Earth's future. October 2018. Credit: NWAL/DRI.

A Youth Day participant sketches his vision for Earth’s future. October 2018. Credit: NWAL/DRI.

A team of Native Waters on Arid Lands Youth Day facilitators adds their visions for the future. October 2018. Credit: NWAL/DRI.

A team of Native Waters on Arid Lands Youth Day facilitators adds their visions for the future. October 2018. Credit: NWAL/DRI.

The activity, part of a day-long event called Youth Day, was one of many hands-on activities, presentations, and discussions designed to engage the students in thinking about how to embrace the challenges of the future with regard to climate, water, and food.

The event was held as part of the Native Waters on Arid Lands project (NWAL), which partners scientists from research institutions such as DRI and the University of Nevada Reno with extension experts and members of tribal communities from across the Great Basin and American Southwest to explore the potential impacts of climate change and evaluate adaptation options for sustaining water resources and agriculture.

“The young people here today are incredibly gifted and creative, and our communities will rely on them to employ those gifts in facing the challenges of water, food, and climate in the future,” said Meghan Collins, youth engagement coordinator for the Native Waters on Arid Lands project and Assistant Research Scientist in environmental science at DRI.

Although the NWAL project did not initially place an emphasis on youth engagement, early feedback from project participants from various tribes was that they did not want to be talking about issues of climate without including younger voices in the conversation. In response, the NWAL team has held a series of events for tribal youth and college students at locations such as Salish Kootenai College in Montana, Navajo Technical University in New Mexico, and DRI in 2017 and 2018.

Youth Day organizer Meghan Collins of DRI instructs students in the use of Stories in the Snow kits. October 2018. Credit: NWAL/DRI.

Youth Day organizer Meghan Collins of DRI instructs students in the use of Stories in the Snow kits. October 2018. Credit: NWAL/DRI.

During the course of their day at DRI, the group heard from Chris Caldwell from the College of Menominee Nation in Wisconsin, who discussed the work that he does with the school’s Sustainable Development Institute. Schuyler Chew, the graduate student from Arizona State University, described his research on climate change resilience and vulnerability with the Pyramid Lake Paiute Tribe. Steven Chischilly, Associate Professor at Navajo Technical University, described some of the educational opportunities available at his school in New Mexico.

Collins, the event organizer, led the students through an outdoor activity using Stories in the Snow macro-photography kits to explore the environment on the DRI campus and get a taste for scientific inquiry. DRI’s Science Alive Americorps volunteers Brooke Stathis and Chelsea Ontiveros concluded the event with an activity on the salinity and water quality of western rivers.

“The lively and reflective conversations that I heard today were inspiring,” Collins said. “Students brought their best, and we had a lot of intergenerational dialogue that meant everyone in the room walked away with new perspectives on these issues related to the environment.”

DRI Science Alive team members Brooke Stathis and Chelsea Ontiveros lead an activity at DRI Youth Day. October 2018. Credit: NWAL/DRI.

DRI Science Alive team members Brooke Stathis and Chelsea Ontiveros lead an activity at DRI Youth Day. October 2018. Credit: NWAL/DRI.

Later in the week, the Native Waters on Arid Lands project hosted their fourth annual Tribal Summit at the Atlantis Casino Resort in Reno. This event featured two days of presentations and interactive discussions related to climate change, water resources, agriculture, traditional knowledge, livestock and ranching, conservation practices, and other topics. More than 90 people attended the 2018 Tribal Summit, travelling from communities and reservations located across Nevada, North Dakota, New Mexico, Montana, Arizona, Idaho, Utah, Wisconsin, California, Ohio, and Hawaii.

Native Waters on Arid Lands is funded by a five-year, $4.5 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture. Partners in the project include the Desert Research Institute, the University of Nevada, Reno, the University of Arizona, the First Americans Land-Grant Consortium, Utah State University, Ohio University, United States Geological Survey, and the Federally Recognized Tribal Extension Program in Nevada and Arizona.

DRI faculty involved in this project include Maureen McCarthy, Ph.D. (program director), Christine Albano, Kyle Bocinsky, Ph.D., Meghan Collins, Richard Jasoni, Ph.D., Alex Lutz, Ph.D., Anna Palmer, Beverly Ramsey, Ph.D., and Kelsey Fitzgerald.

The Native Waters on Arid Lands team at DRI in October, 2017. Credit: NWAL/DRI.

The Native Waters on Arid Lands team at DRI in October, 2017. Credit: NWAL/DRI.

For more information on Native Waters on Arid Lands, please visit https://nativewaters-aridlands.com or follow the project on Facebook and Twitter.

Airborne Systems Research and Environmental Testing at DRI

Airborne Systems Research and Environmental Testing at DRI

Visit DRI’s Northern Nevada campus on a clear afternoon, and you may hear a near-deafening buzzing. A massive swarm of bees? Thankfully, no—it’s an unmanned aircraft system (UAS), or drone, being flown by researchers from DRI’s Airborne Systems Testing and Environmental Research (ASTER) laboratory.

Adam Watts, Ph.D., associate research professor of fire ecology and director of the ASTER lab, has worked over the last several years to apply UAS technology in a variety of research projects in dangerous or hard-to-access environments. Perhaps most notably, Watts led a 32-mile UAS flight at 1,500 feet above ground, the longest commercial UAS flight in American aviation history, in 2017. This historic flight was part of a larger effort to determine the feasibility of routinely using UAS for aerial cloud-seeding operations, which until recently have required pilots to fly in dangerous winter storm conditions. (You can read a full write up on the project in Popular Science.)

Drone America's Savant™ sUAS flies with cloud seeding flares at the Hawthorne Industrial Airport in Hawthorne, Nevada on Friday, April 29, 2016. DRI partnered with the Reno-based Drone America and Las Vegas-based AviSight to develop cloud-seeding operations in Nevada.

Drone America’s Savant sUAS flies with cloud seeding flares at the Hawthorne Industrial Airport in Hawthorne, Nev. on Friday, April 29, 2016. The test was successful by igniting the silver-iodide flares at 400 feet and flying for approximately 18 minutes. Photo by Kevin Clifford/Drone America.

More recently, Watts and his team in the ASTER lab have been working in entirely different environmental conditions: above prescribed burns.

“One of the big questions in land management, and in public health, is how smoke from prescribed fires versus wildfires differ, and what the effects are,” said Watts. His team is looking to UAS technology to explore this question and learn more about the differences between prescribed fire emissions and those from wildfire.

Earlier this year, postdoctoral researcher and fire ecologist Kellen Nelson, Ph.D., led the development of an innovative air sampling payload—a set of sensors and sampling equipment installed aboard the UAS—used to collect samples of wildland fire smoke. Traditionally, smoke has been collected by researchers from the air thousands of feet above the fire, or from a safe position on the ground far from the center of the smoke plume. Using a UAS, the research team has the unprecedented ability to collect samples directly from plumes and to move with a fire as its behavior changes, taking real-time measurements of CO2, CO, particulate matter, temperature, humidity, and pressure.

Jayne Boehmler holds up the data logger she designed to track real-time air quality measurements and remotely open the sampling canisters aboard the UAS. Kellen Nelson (left) and Adam Watts prepare the UAS (center) for flight in the background.

Jayne Boehmler holds up the data logger she designed to track real-time air quality measurements and remotely open the sampling canisters aboard the UAS. Kellen Nelson (left) and Adam Watts prepare the UAS (center) for flight in the background. October 2018.

“By collecting air samples, we’ll be able to test for trace gases and other constituents that we don’t have sensors to measure in real-time,” explained Nelson.

To do this work, the ASTER lab team has worked collaboratively with the researchers in DRI’s Organic Analytical Laboratory (OAL), a group that’s conducted ground-breaking air quality research over the last several years, including work to better understand the compounds present in e-cigarette emissions. The OAL provided sampling canisters to be installed on the UAS that are evacuated of all their contents. While in flight, the canisters are opened remotely to suck in the surrounding air, all using a handheld touchscreen controller developed by the team’s research physicist, Jayne Boehmler. Once the UAS is back on ground, the canisters are removed and returned to the OAL for analysis. Researchers hope these air quality data will improve understanding of smoke emissions from different fuel types.

“Smoke is really ephemeral,” explained Watts. “You’ll have a smoke plume moving around, or a little column of smoke coming up from a patch of vegetation that’s burning. Our custom payload on an unmanned aircraft is a powerful tool to make targeted measurements.”

Adam Watts explains how he’ll pilot the UAS for the test on DRI’s Northern Nevada Campus on October 11th, 2018.

Adam Watts explains how he’ll pilot the UAS for the test on DRI’s Northern Nevada Campus on October 11th, 2018.

Nelson and Watts successfully tested the payload at the Prescribed Fire Research Consortium’s research burn in Florida this spring and under laboratory conditions this fall. They’ve shown that the UAS can handle eight pounds of equipment with minimal vibration in flight and that the real-time data measurement is accurate. Going forward, Watts, Nelson, and Boehmler hope to test the payload in the field over live prescribed burns.

Last week, the team traveled to the Sycan Marsh Preserve, a Nature Conservancy property in southern Oregon, to test the UAS in the field with the Missoula Fire Lab and the Nature Conservancy. Unfavorable conditions prevented prescribed burns from happening on this trip, but the team has their sights set on getting the UAS back in the field soon.

Boehmler and Nelson work on the UAS at the Sycan Marsh Preserve in October. Credit: Craig Bienz/The Nature Conservancy.

Boehmler and Nelson work on the UAS at the Sycan Marsh Preserve in October 2018. Credit: Craig Bienz/The Nature Conservancy.

Watch the video to hear from Watts, Nelson, and Boehmler as they prepare for their trip to Oregon and learn more about UAS applications for wildland fire research.

To learn more about the range of UAS research happening at DRI, please visit: https://www.dri.edu/uas-research.

Meet Henry Sun, Ph.D.

Meet Henry Sun, Ph.D.

Henry Sun, Ph.D., is an associate research professor of microbiology with the Division of Earth and Ecosystem Sciences at the Desert Research Institute in Las Vegas. Henry specializes in the study of microscopic organisms that live in extreme environments, often using specimens from here on earth to learn about possibilities for life on Mars. He is originally from China and has a bachelor’s degree in botany and master’s degree in phycology (the study of algae) from Nanjing University. He also holds a Ph.D. in microbiology from Florida State University and completed a post-doc in astrobiology (the study of life in the universe) at the Jet Propulsion Lab in Pasadena, CA. Henry has been a member of the DRI community since 2004. In his free time, he enjoys playing pickup basketball with friends in Las Vegas, and spending time with his wife and two kids.

DRI: What do you do here at DRI?HS: I do quite a few things, all centered around the study of life in extreme environments – places that are in one way or another similar to Mars. We are studying what we call analog environments, trying to understand whether there’s life in these places that are comparable to Mars, learning how to go about detecting life and organisms, and developing ideas for reliable instruments that we can send to Mars to look for life there.

DRI: How did you become interested in this line of work?
HS: It started in graduate school, when I was given the opportunity to go to Antarctica, to a place called the Dry Valleys, to do my dissertation work. Until 1976, this was a place thought to be devoid of all life. But my former adviser, Imre Friedmann, extrapolating from his work in the hot deserts in the southwestern U.S., discovered thriving communities of microalgae and cyanobacteria in the pore spaces in the Antarctic sandstone. Sandstone is translucent, so sunlight can penetrate the first few millimeters. The stone holds onto water in the pore spaces so it doesn’t dry out right away. And that’s all you need to support life. I fell in love with these organisms on my very first trip there.

Henry Sun at work in Antarctica, January 2005.

Henry Sun at work in Antarctica, January 2005.

DRI: What did you learn from studying those organisms?
HS: Probably the most remarkable thing we have learned about these organisms is that they have a very slow growth rate. We have monitored a few rocks closely over the last 50 years and never saw any appreciable signs of growth. In fact, they are so long-lived that their age can be determined by radiocarbon decay. In other words, if you look at their radiocarbon content, you would think they are dead, fossilized organisms. But we know they are alive because as soon as we thaw them to a normal temperature they start to breathe, taking up carbon dioxide and releasing oxygen. And because they start to grow and reproduce when we put them in a petri dish and incubate at more favorable temperature conditions.

That said, we still have a lot to learn about these organisms, and the opportunity for a serious study presented itself this year. When my former advisor passed away in 2007, he left behind a large collection of thousands of rocks from Antarctica, amassed over his career, in a walk-in -30oC freezer at Florida State University in Tallahassee, Florida. Last year, Florida State decided to decommission that building, and the samples were about to be thrown out. This past June, with a little help from DRI and NASA, we raised some money and purchased three freezers. I drove to Florida and hauled all of the samples back in a cargo van full of coolers and dry ice. I moved the entire collection to Las Vegas without them ever being thawed, so now they are sitting at DRI waiting to be studied.

An outcrop of Antarctic sandstone at one of Henry Sun's field sites.

An outcrop of Antarctic sandstone at one of Henry Sun’s field sites.

DRI: What are you planning to do with these samples?
HS: Inside of the freezers, the samples are kept at temperatures of -30oC (-22oF) and in complete darkness, but the microbes are still alive. As I said, we have thousands of samples. Only two samples have been studied using modern-day DNA analysis. So, the first thing we want to is a comprehensive molecular study and find out what lives in these samples.

We are also working with colleagues at the NASA Ames Research Center to look for cyanobacteria that can grow not using the visible light, but using the infrared. Visible light, which photosynthetic organisms prefer, is filtered out by the sandstone. But the infrared is still present. It is not as good as the visible, but that is all the organisms at the bottom of the colonized zone have. We speculate that they may subsist on the infrared.

Closeup of one of Henry Sun's Antarctic rock samples, home to unknown species of microorganisms.

Closeup of one of Henry Sun’s Antarctic rock samples, home to unknown species of microorganisms.

DRI: What do you like best about what you do?
HS: I feel most rewarded when we engage school teachers and their students in what we do. We do this through a program called Spaceward Bound, which was created by Chris McKay, DRI’s Nevada Medalist from two years ago. The goal is to train the next generation of space explorers in remote but scientifically interesting places that are analogous to the moon or Mars. The reason why we need to start this now is because the first human mission to Mars may happen as early as the 2030s. The scientists who will go to Mars to study its environment are still in school today. We have done several Spaceward Bound expeditions in the Mojave and Death Valley area with teachers and students from Nevada. To me, there is no greater reward than to see children get inspired by the work we do so that one day they may become scientists themselves and continue to push back the frontier of knowledge.

Henry Sun talks with a student at DRI's 2018 'May Science Be With You' event in Las Vegas.

Henry Sun talks with a student at DRI’s 2018 ‘May Science Be With You’ event in Las Vegas.

For more information on Henry Sun and his research, continue to his research page: https://www.dri.edu/directory/4764-henry-sun

DRI faculty teach water, sanitation, hygiene, and environmental issues courses in eSwatini (Swaziland)

DRI faculty teach water, sanitation, hygiene, and environmental issues courses in eSwatini (Swaziland)

Students from DRI’s WASH Capacity Building Program learn about dry sanitation during a field trip to the University of eSwatini (Swaziland) project site at the community of Buka, eSwatini. September 2018. Credit: Braimah Apambire/DRI.


 

In August and early September 2018, several faculty members from the Desert Research Institute (DRI) found themselves far from home – teaching courses in water, sanitation, and hygiene (WASH) and environmental issues in the Kingdom of eSwatini, formerly known as Swaziland, a small country nestled along South Africa’s eastern border with Mozambique.

The courses, all focused on a set of interconnected environmental issues and public health challenges referred to by the acronym “WASH” (short for water, sanitation, and hygiene) are part of an ongoing WASH Capacity Building Program, operated by DRI’s Center for International Water and Sustainability (CIWAS). This program received a five-year funding award from humanitarian non-governmental organization World Vision earlier in 2018 and provides technical capacity training to field staff who work in the WASH sector in developing countries.

Students from DRI’s WASH Capacity Building Program on a field trip to a World Vision and eSwatini Water Services Corporation Program site in Matsanjeni, southeastern eSwatini. Students learned about management of piped water supply systems, sanitation technologies and transboundary water issues. Credit: Braimah Apambire/DRI.

Students from DRI’s WASH Capacity Building Program on a field trip to a World Vision and eSwatini Water Services Corporation Program site in Matsanjeni, southeastern eSwatini. Students learned about management of piped water supply systems, sanitation technologies and transboundary water issues. September 2018. Credit: Braimah Apambire/DRI.

Students from DRI’s WASH Capacity Building Program on a University of eSwatini University-led field trip to the Mbabane Wastewater Treatment site. Credit: Braimah Apambire/DRI.

Students from DRI’s WASH Capacity Building Program on a University of eSwatini University-led field trip to the Mbabane Wastewater Treatment site. Credit: Braimah Apambire/DRI. September 2018.

“The WASH Capacity Building Program is a partnership between DRI, the University of Nevada, Reno, Drexel University, and World Vision,” explained Braimah Apambire, Director of CIWAS. “We’ve developed six courses which we teach partly online and partly face-to-face, and the students take four of those courses to complete our post-graduate certificate program. In April, we taught two courses in Ghana, and the two courses that we just taught in eSwatini were the next in the series.”

The current cohort — the third since the program’s pilot season in 2016 — consists of 30 students from 18 African countries. In eSwatini, their coursework focused on water supplies and environmental management in developing countries, and on cross-cutting issues in WASH. The classes were taught by Apambire, DRI’s Rosemary Carroll, Ph.D., and Alan Heyvaert, Ph.D., and Emmanuel Opong, Ph.D., of World Vision.

Participants in DRI’s WASH Capacity Program gathered in eSwatini during August and early September 2018 to complete courses in cross-cutting issues in water, sanitation, hygiene and environmental issues. The 2018 cohort includes 30 students from 18 countries. Credit: World Vision eSwatini Communications.

Participants in DRI’s WASH Capacity Program gathered in eSwatini during August and early September 2018 to complete courses in cross-cutting issues in water, sanitation, hygiene and environmental issues. The 2018 cohort includes 30 students from 18 countries. Sept. 2018. Credit: World Vision eSwatini Communications.

From left to right: Courses were taught by instructors Braimah Apambire, Ph.D. (DRI), Emmanuel Opong, Ph.D. (World Vision), Rosemary Carroll, Ph.D. (DRI), and Alan Heyvaert, Ph.D. (DRI). Credit: World Vision eSwatini Communications.

From left to right: Courses were taught by instructors Braimah Apambire, Ph.D. (DRI), Emmanuel Opong, Ph.D. (World Vision), Rosemary Carroll, Ph.D. (DRI), and Alan Heyvaert, Ph.D. (DRI). Sept 2018. Credit: World Vision eSwatini Communications.

The classroom time was interspersed with field trips to rural areas, dams, water and sanitation facilities, wastewater treatment plants, and more. Students got a firsthand look at some of the WASH challenges that are common in eSwatini and a chance to experience some of the region’s unique culture and countryside. CIWAS collaborators from the University of eSwatini gave guest lectures and organized field trips for the students during face-to-face teaching in the country.

“ESwatini is a mountainous country and very, very beautiful,” Apambire said. “It is a kingdom with a king who is the ruler of the country, and a traditional culture that is almost completely intact. Their government and NGOs, including World Vision, take interest in developing social programs that help people, especially the poor. But they still have rural areas that do not have water and sanitation facilities.”

Sibebe Rock, north of Mbabane, Capital of eSwatini, one of southern Africa’s most impressive geological features. Credit: Braimah Apambire/DRI.

Sibebe Rock, north of Mbabane, Capital of eSwatini, one of southern Africa’s most impressive geological features. Sept 2018. Credit: Braimah Apambire/DRI.

Students from DRI’s WASH Capacity Building Program take a field trip to eSwatini's Buka Community. September 2018. Credit: Braimah Apambire/DRI.

Students from DRI’s WASH Capacity Building Program take a field trip to eSwatini’s Buka Community. September 2018. Credit: Braimah Apambire/DRI.

Most notably, says Apambire, people of eSwatini are currently experiencing WASH challenges related to an ongoing drought, which neighboring South Africa is experiencing as well. DRI has had discussions with the University of eSwatini and some governmental departments about how the institute can help address their challenges.

“Because of the impact of climate change and reductions in rainfall, they are having some existing wells dry up,” Apambire said. “There needs to be more research to find out what some of the causes are and how to mitigate that. Artificial recharge is one option, and they probably also need to look for alternative sources of drinking water for those communities. That’s their biggest challenge right now.”

Students from DRI’s WASH Capacity Building Program on a University of eSwatini University-led field trip to a house in the Buka community where wastewater is used to grow vegetables. Credit: Braimah Apambire/DRI.

Students from DRI’s WASH Capacity Building Program on a University of eSwatini University-led field trip to a house in the Buka community where wastewater is used to grow vegetables. Credit: Braimah Apambire/DRI.

Five women are enrolled in the 2018 cohort of the WASH Capacity Building Program, receiving training that will help them become leaders in the WASH sector. Credit: Braimah Apambire/DRI.

Five women are enrolled in the 2018 cohort of the WASH Capacity Building Program, receiving training that will help them become leaders in the WASH sector. Sept 2018. Credit: Braimah Apambire/DRI.

For women and girls in many African nations, challenges related to WASH impact everything from their ability to go to school each day to the survival and well-being of their children and families. For this reason, Apambire is pleased to report that, for the first time, five of the students in this year’s cohort are female.

“DRI is helping to build women leaders in this sector,” Apambire said. “Women in Africa are the ones that the burden of fetching water falls on. When you are a girl and there is no water in your village, you spend a lot of time going to fetch water, sometimes a mile or two away. Then you are not able to go to school, so it affects education. Having women become trained as WASH professionals and go back to the villages really empowers them to become a part of the implementation and management of these projects.”

This fall, students in the 2018 cohort of the WASH Capacity Building Program will finish their coursework online, with instruction from Apambire, Seshadri (Shey) Rajagopal, Ph.D. of DRI, Emmanuel Opong, Ph.D., and John Akudago, Ph.D., WASH Sector Expert. The program is now accepting applications for their 2019 cohort.


Learn more:

Follow CIWAS on Twitter at @driciwas – https://twitter.com/driciwas

For more information on CIWAS, please visit: https://www.dri.edu/center-for-international-water-and-sustainability

For more information on the WASH Capacity Building Program, please visit: https://www.dri.edu/center-for-international-water-and-sustainability/wash-capacity-building-program

DRI researchers share projects with Nevada water resources professionals at state-wide symposium

DRI researchers share projects with Nevada water resources professionals at state-wide symposium

Several DRI researchers reported on recent projects at the Nevada Water Resources Association (NWRA) Fall Symposium in Reno this week. They were among engineers, resource managers, water rights professionals, and other stakeholders from across Nevada brought together by NWRA to discuss current water resource management topics, research and technology development, and legal issues related to water in the state.

DRI researchers explored a wide range of topics in their presentations, including drought and fire danger, innovations in irrigation, hydromechanics in mining operations, and more:

  • Tim Brown, Ph.D., research professor of climatology and Director of the Western Regional Climate Center, explored the relationship between fuel moisture and fire danger.
  • Dan McEvoy, Ph.D., assistant research professor of climatology and regional climatologist at the Western Regional Climate Center, identified a correlation between drought and dire danger indices and is now working with stakeholders to develop prediction strategies for fire based on EDDI (evaporative demand drought index).
  • Alan Heyvaert, Ph.D., associate research professor of biochemistry, discussed the impacts of wildfire on surface water, including ash deposition, erosion, and declining water clarity.
  • Zhiqiang Fang, Ph.D., postdoctoral researcher in the Division of Hydrologic Sciences, described two recent projects, including evaluating the effects of stresses on tunnels in mining operations using coupled hydromechanical models, and analyzing constant rate fluid injection into rock in geothermal systems.
  • Hai Pham, Ph.D., postdoctoral fellow in the Division of Hydrologic Sciences, showed how his team has used groundwater models to examine the effect of groundwater pumping on surface water in the Tahoe Valley South groundwater basin.
  • Maureen McCarthy, Ph.D., research faculty in the Division of Earth and Ecosystem Sciences, Christine Albano, graduate research assistant in the Division of Earth and Ecosystem Sciences, and Justin Huntington, Ph.D., research professor of hydrology, presented with colleagues from other institution–including the University of Nevada, Reno and USGS–about the Water for the Seasons project, a program that partners scientists with community water managers and water right holders in the Truckee-Carson River System (TCRS), to explore new strategies and solutions for dealing with extreme climate events such as droughts and floods. The four year study is funded by the National Science Foundation and the U.S. Department of Agriculture, and uses the TCRS in a pilot study to learn how to best link science with decision-making in snow-fed arid-land river systems. By working collaboratively with stakeholders, Water for the Seasons aims to create a model for improving community climate resiliency, or ability to adapt to extreme climatic conditions.

In operation for more than 70 years, NWRA is a non-profit professional association that provides education, networking, and training opportunities for water resources professionals in Nevada. To learn more about NWRA, visit: http://www.nvwra.org/

To learn more about the wide range of water resources research conducted at DRI, please visit: https://www.dri.edu/hydrologic-sciences

Secrets of Successful Solar

Secrets of Successful Solar

Photo caption: Prototype sky-imaging camera. Credit: Eric Wilcox.

 

By: Jane Palmer

Reno, NV (September 1, 2018) – Solar energy is a clean and renewable energy source, but integrating solar power into the grid is not without challenges. For electricity to be useful, it needs to be delivered to users in a steady, reliable, and affordable way, says NEXUS scientist Eric Wilcox of the Desert Research Institute (DRI). But solar energy can only be generated when the sun is shining, so to guarantee a reliable source of electricity requires using power from other sources when the sun goes down or clouds shade solar panels. “This poses both a technical and an economic challenge,” Wilcox says. “How can we design systems so that solar power is maximized and backup power generation is minimized?”

NEXUS researchers have addressed this question from a variety of perspectives. Scientists at DRI and the University of Nevada, Las Vegas (UNLV) have investigated the fluctuations in solar power production due to cloudiness, in an attempt to build accurate forecasts. At UNLV, researchers have built a microgrid—a mini version of the electric power grid—that can operate independently of the main grid for testing “smart” technology. Such technologies will maintain a steady power supply when transitioning between solar power, gas-generated backup, and battery storage systems. Economics researchers at the University of Nevada, Reno (UNR) have also been performing economic analyses to determine how behavioral economics can motivate greater efficiency and utilization of renewable energy.“The promise of the approaches used and technology under development by this group is central to the mission of increasing the utilization of solar energy and mitigating pollution, by reducing the amount of fossil-fuel generated backup power needed to protect electricity grids from fluctuations in solar power generation,” Wilcox says.

Calculating Cloudiness

Although Nevada enjoys many sunny days each year, every few weeks or so, the North American monsoon effect carries moisture from the Gulf of California to form clouds over Southern Nevada. And when these clouds come, solar facilities can’t produce as much power.

Numerical weather prediction models can determine when one of these weather events will arrive up to five days in advance, but the models can’t predict when a particular cloud will move in between a solar panel array and the sun. Typically during these times, the amount of sunlight reaching a panel can vary dramatically over very short time scales, causing large fluctuations in voltage and power. Ideally, grid operators could anticipate from the forecasts when these events occur, so that they could coordinate a smooth transition toward using alternative power sources.

“The research has demonstrated the validity of using fluctuations in regional humidity over Las Vegas to characterize the error in solar forecasts derived from numerical weather prediction models,” Wilcox says. “So it will help achieve more accurate day-ahead solar forecasting.”

To detect and predict these quick power fluctuations, Wilcox and his team have built a prototype sky-imaging camera that takes images of the sky in the vicinity of solar photovoltaic (PV) arrays. The weatherproof camera takes the pictures and then analyzes them to distinguish cloudy pixels, which are the smallest units of a digital image, from clear sky pixels. Using this information, a computer algorithm can then track the movement of a cloud and predict when it will shade the PV array.

Following from this work, UNLV assistant professor Brendan Morris has explored more accurate prediction algorithms and UNLV scientist Venkatesan Muthukumar has investigated other concepts to produce distributed sensors for forecasting solar fluctuations. “This idea has really seemed to have caught on now and spread well beyond our DRI lab,” Wilcox says.

The low cost of the developed tool means the scientists could deploy the instruments at distributed solar PV sites in the city of Las Vegas and develop a shared database of sky images. This wealth of data will mean the researchers can continue to refine the algorithms that predict the cloud movements. “The goal is to build networks of sensors that can make predictions of solar generation fluctuations and communicate those forecasts to advanced control systems,” Wilcox says.
The researchers are continuing to work on developing the idea of making short-term forecasts of cloud cover in as little as 5 to 20 minutes away. The goal is to determine if the low-cost forecasting technology can make a difference in optimizing the use of batteries, such as the Tesla Powerwall batteries. “Grid operators may also be interested in the networked nature of this solution, so that optimization can happen at the neighborhood scale,” Wilcox says.

Mighty Microgrids

As the U.S. electric grid has been starting to run up against its limitations, the Department of Energy (DOE) has developed a vision of a future, more resilient, “smart” electric power infrastructure. The DOE Smart Grid Research and Development Program considers microgrids— localized grids that can disconnect from the traditional grid to operate autonomously—as key building blocks for this smart grid. Using such microgrids would facilitate integrating renewable sources of energy into the electrical infrastructure and offer other advantages for grid reliability.

“Microgrids can strengthen the grid resilience which is becoming increasingly important in the face of the increased frequency and intensity of power outages caused by severe weather due to climate change,” says NEXUS scientist Dr. Yahia Baghzouz of UNLV.

Baghzouz and his team have built a small microgrid at UNLV, which acts as a test bed to investigate the various devices that will be needed for the smart grid and technologies that will ultimately help with the integration of renewable energy resources into the grid infrastructure. Using this microgrid, the scientists have demonstrated that advanced inverters, which convert the output of photovoltaic solar arrays into utility frequency alternating current, can be configured to ride through voltage and frequency disturbances as well as assist with voltage support and reactive power requirements.

Simultaneously, NEXUS scientists Mehdi Etezadi-Amoli and M. Sami Fadali at UNR have built a new lab for simulating real-time digital monitoring and control of remote systems, such as the UNLV microgrid. Baghzouz is also testing the DRI forecasting technology for its ability to smooth out variations in solar power output to the electricity grid when coordinated with a battery energy storage system.
“The microgrid is the natural place to see how we can combine forecasting technology with other smart grid technology with the goal of increasing the reliability of solar power on the electric grid,” Wilcox says.

A Different Type of Forecast

Solar power has the potential to supply a sustainable and clean source of energy to households and industry in the state of Nevada and beyond, but to fully realize its benefits requires a detailed understanding of the economic costs and risks associated with its use. “The incorporation of solar into our power supply has to be done with the highest of knowledge, not only in engineering but also in economics,” says NEXUS economist Dr. Thomas Harris at UNR.

Consequently, Harris has also been looking at the risks, for investors, associated with this sustainable energy source. His work has demonstrated that income tax credits and appropriate depreciation schedules can yield rates of return on solar development greater than 15 percent, which is sufficient for private investment. The study also estimates that solar energy development on the 60,000 acres of Nevada designated by the Bureau of Land Management as Solar Economic Zones has the potential to yield $326 million annually in positive impacts on output, employment, and household income.

NEXUS economist Dr. Dilek Uz has been looking into solar energy policy and its political implications. “If, as a society, we have ambitious environmental goals, it is important that we reach them in the most cost effective way possible,” Uz says. When it comes to solar, large-scale projects seem to offer significant cost advantages relative to residential rooftop installations, however the whole issue is highly controversial and politically charged, Uz says.

Storage is the key to integrating renewables into the grid and this is where the new frontier in power utility regulation is, Uz says. Currently the renewable energy policy toolbox of many states includes rebates for residential rooftop solar installations as well as favorable rates for residential solar power. Uz is researching how the different benefits provided by owning a rooftop panel are valued at the residential level. It is research that will inform policy on the correct subsidy level for better use of tax payer money. She is also looking into how owning a rooftop solar panel correlates with voting patterns on energy related issues.
The economics team is also collaborating with the DRI researchers in analyzing the benefits of improved cloud forecasting techniques to mitigate the impacts of intermittency on the economics of solar. “How much does using this technology cost?” Harris says. “It is a very complicated issue from a solar standpoint.”
For solar power to be not just sustainable, but profitable, in future decades economists have to investigate all the variables and permutations associated with this relatively new industry, Harris says.

A Model Future

A common thread running through the research investigating maximizing the benefits of solar power while minimizing the costs is that of building models to test out different systems, technologies and theories. At DRI, the scientists numerically simulate the weather using a supercomputer and at UNLV, the engineers have constructed a physical model of a grid in the form of the experimental microgrid.
Creating such models allows the scientists to see how such complex systems would react in different scenarios e.g., to investigate how the solar power responds to different degrees of cloudiness, or how different technologies can smooth out fluctuations in the grid. Questions like these are difficult to answer only by observing real systems because often so many elements of the system change at the same time. “Modeling is an important research tool for estimating the behavior of such complex systems because we can carefully control the environment,” Wilcox says.
Similarly, at UNR, the NEXUS economists have constructed numerical models to simulate the economic relationships among participants in the energy and development markets in Nevada.

Fluctuations in solar and wind generation are often cited as a limiting factor in preventing generation of a large majority of electricity from renewable sources, Wilcox says. “We seek to understand the economic factors that may limit solar electricity development and then we seek to mitigate the fluctuations that limit the extent to which the grid can depend on solar electricity,” he says. “Overcoming these limitations is essential to reducing greenhouse gases and other pollution emissions from traditional fossil fuel sources of electricity generation.”###

This article was written by Jane Palmer for the Solar Nexus project. The original post is available here:  https://solarnexus.epscorspo.nevada.edu/secrets-of-successful-solar/

Started June 1, 2013, the Solar Nexus Project is a multifaceted five-year research project focusing on the nexus (or linkage between) solar energy generation and Nevada’s limited water resources and fragile environment. The focus of the Solar Nexus Project is creating a center of research excellence on solar energy conversion to electricity, minimizing its negative impacts on water usage and the environment. In essence, seeking to create a paradigm shift in how solar plants are built and utilized, helping Nevada establish itself as a competitive state in the field of solar nexus research.

The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education.

Meet Brittany Kruger, Ph.D.

Meet Brittany Kruger, Ph.D.

Brittany Kruger, Ph.D., is a staff research scientist in geobiology with the Division of Hydrologic Sciences at the Desert Research Institute in Las Vegas, NV. She specializes in the study of microbes that live in deep underground environments, such as those found inside of deep mines. Brittany is a Minnesota native, and holds a Ph.D. and Master’s Degree in Water Resources Science from the University of Minnesota, Duluth. Her work has taken her to diverse environments, including Lake Superior, Lake Malawi in Africa, Woods Hole, MA, Japan, and a mile-deep abandoned gold mine in South Dakota. She has been a member of the DRI community since 2014, when she moved to Las Vegas for a position in Dr. Duane Moser’s Environmental Microbiology Lab. In her free time, Brittany enjoys rock climbing in Red Rock Canyon and making trips into the Sierras.


DRI: What do you do here at DRI?
BK: I am a staff scientist here at DRI. I support a number of different projects that focus on deep biosphere life, which essentially means we try and examine life as deep as we can access it underground. Specifically, we look for microbial life and try and understand how those organisms are functioning given the stresses that they encounter deep underground.

DRI: How do you access deep underground environments?
BK: There are a couple different ways you can access the deep biosphere. One way is to actually go there – you can go down in deep mines, for example. In that scenario we can actually bring instruments and equipment down with us. One of our most recently active field sites is an old gold mine in South Dakota, where we are able to go about a mile underground.

Another option to access subsurface life is to use deeply drilled wells that access water or aquifers that are very far underground. This is the approach that we use at active field sites in the Death Valley and Armargosa Valley areas. There aren’t a lot of places in the world where you can access the very hottest, deepest part of the earth quite as easily as we can in this area, because that surface layer of the earth is a little bit thinner here, particularly in the Death Valley region.

Brittany Kruger collects samples from an underground mine site.

Brittany Kruger collects samples from an underground mine site.

DRI: We understand that some of your research has implications for life on other planets. Can you tell us about that?
BK: One of the projects that I’ve been focusing on since I started here at DRI is the NASA Astrobiology Life Underground Project. I have served as continental fieldwork coordinator for that project since joining DRI. We try to access the deep biosphere in multiple locations to install experimentation and collect samples, and we use what we learn about the way microbes are metabolizing and surviving in those locations to help us understand how life might be functioning on other planets that experience the same or similar stressors, like extreme heat, temperature, pressure, radiation, lack of sunlight, etc.

Right now, we’re installing experiments that focus on better understanding exactly what chemical reactions microbes are using to live in these deep environments.  If you think about it, the majority of life that we understand well, the life on the surface of the planet, uses sunlight for energy at some point in their food chain. But these microbes deep underground do not.  Instead they’re able to rely on dissolved metals or other compounds to produce the energy they need to live. Sometimes they need to be in actual physical contact with these compounds, and attach to those surfaces to live.  It’d be similar to us having to go touch a rusty car in order to breathe. So we’re installing various mineral materials into these deep biosphere environments and studying the microbial populations that colonize them.

As an additional component to that project, we also work closely with members of the SHERLOC instrument team at the NASA Jet Propulsion Laboratory, who are developing an instrument slated to fly on the Mars 2020 Rover that uses Raman and Luminescence scanning to detect organics and chemicals. A lot of the field samples and experiment results are analyzed with that instrument to learn more about our samples and to help provide background data for the instrument prior to its Mars deployment.

Brittany Kruger collects samples from an underground mine site.

Brittany Kruger collects samples from an underground mine site.

DRI: What is it like to work deep underground?
BK: It’s great. I love it. I’m always excited to go down. It’s absolute pitch black, and it gets hotter the deeper you go. At our hottest underground site, it is something like 90 degrees and 90 percent humidity. It is uncomfortable to be there for a long time, for sure. But the facility we work in does a really good job of trying to mitigate air flow while we’re there to keep that a little more comfortable.

One of the best parts is also spending time with the old miners. I go to South Dakota every few months, and spend multiple days underground accessing our sites in what was once the Homestake Gold Mine.  Mining has ceased in the facility, and the entire mine has now been dedicated solely to science and is called the Sanford Underground Research Facility.  So it’s a really unique facility where people who previously mined the workings are now employed as underground guides for scientists. There are extremely high-level physics labs located about a mile underground on the deepest accessible level. You’d never know you were underground in those labs; they’re like any state of the art aboveground facility.

But, that’s not where we want to go – we want to go to the far away, dirty, dark, hot places where it’s not maintained and where we can access the unaltered water flowing out of the mine wall. So, we get to hang out with the old miners that know the mine, and know how to access those places and know how to do it safely. So that’s fantastic – we get to see some really exciting things and some really awesome old history. It’s fun.

Brittany Kruger collects samples from an underground mine site.

Brittany Kruger collects samples from an underground mine site.