Jun 5, 2023 | Blog, Featured researchers
NSF Graduate Research Fellowship Awarded to Microplastics Researcher Rachel Kozloski
By Guadalupe Alvarez
DRI Communications Intern
Above: Rachel in the microplastics lab at DRI.
Credit: Monica Arienzo/DRI.
Rachel Kozloski is in the second year of her Ph.D. at the University of Nevada, Reno. Under the mentorship of DRI’s Monica Arienzo, Kozloski focuses on the movement and characteristics of microplastics in ground and surface water. She recently received the National Science Foundation Graduate Research Fellowship Award (GRFP), a prestigious grant awarded to students pursuing research-based graduate degrees in the natural, social, and engineering sciences across the US.
Last year, Kozloski worked with researchers in Cambodia, studying the impact of plastic pollution on the water quality of the Mekong and Tonle Sap Rivers. As part of the microplastics lab at DRI, her research interests also include microplastic movement between surface and groundwater resources in the Reno/Tahoe area.
Microplastics are everywhere and are of growing interest to hydrologists studying the health of aquatic ecosystems and the environment. In this interview, Kozloski breaks down the ubiquitousness of microplastics and their impact on our local water systems in Northern Nevada. This interview was lightly edited for length and clarity.
Above: DRI Graduate Research Assistant of Hydrologic Sciences, Rachel Kozloski.
DRI: What was the journey like getting to this point and what inspired you to pursue your research?
Kozloski: After three years of undergrad studying aviation, I took a break from school. When I went back to finish my degree, I ended up studying soils and agricultural ecology, which was a big shift. By the time I’d finished I’d spent six years in undergrad. I was tired, and I was just really overwhelmed by the debt. All I could think about was getting out and getting to work. All my professors pushed me to consider grad school, but I needed money. So, I went immediately to work. I worked in Carson City for a little consulting firm there. It was a huge learning experience. But within the first three years, I realized that to do the work I really wanted to do, I needed to go back to grad school. But I didn’t know how to do it, because I had young kids and life just kind of needed to happen. I stayed in consulting and got my family to a point where it was stable. It took me about 16 years of working before my kids were old enough that they didn’t need me so intensely and I had enough savings.
When I started to look for grad school opportunities, I was hearing more and more about microplastics and artificial groundwater recharge. I was a big fan of DRI, and then I saw that Monica Arienzo was looking for a grad student. I just happened to come across it at the right time, and it was what I was looking for. I was really excited. My second semester in grad school I had this opportunity to go to Cambodia for two weeks and collect all kinds of samples and just be in a totally different environment and think about water development in a different way. I’ve been able to work with some neat folks; Cambodian researchers and researchers from all over the world who are working on these projects. It was a huge opportunity.
DRI: What are you currently working on? And what questions and challenges are you trying to address with your research?
Kozloski: I’m really interested in how waste management practices and land use patterns affect microplastic concentrations in water systems. I’m also transitioning to my groundwater and surface water connectivity work, which is what I wrote my GRFP proposal on. I’m getting ready to start collecting samples this summer.
Microplastics are a novel pollutant. We’ve been making plastic for more than 70 years, but we’ve only started to consider the consequences of that in the last couple of decades. We don’t have a handle on how microplastics move, how they’re formed, what their relationships are with other hydrologic variables like bacteria, biofilm, mercury, and other pollutants.
My focus is looking at how human activity affects the amount of plastic that’s in our water. And then how do microplastics move between surface and groundwater systems and soils? These tiny particles carry all the chemical signatures of what they were manufactured with, including all the additives and chemicals that have gone into them. We know they’re found in surface water and groundwater. So, then the question is, how are they moving? How fast are they moving? How deep do they go? Under what situations are they moving between surface and groundwater systems? If we do find movement, that can help in designing systems that can protect our groundwater, especially when we’re talking about climate change and needing to be really careful about our resources.
Rachel in the microplastics lab at DRI.
Credit: Monica Arienzo/DRI
DRI: What are some characteristics of microplastics that you’ve analyzed, and how do you identify true microplastics?
Kozloski: Microplastics can range in size from as big as a pencil eraser all the way down to smaller than a bacterium. Those tiny particles that are less than a millimeter down to the micrometer scale, those are the ones that I’m really interested in. We use a machine here at our microplastics lab, the micro Fourier-transform infrared spectroscopy (FTIR). It shoots a light at the particles, and then every particle has a spectral signature of what it absorbs, and what it reflects.
There are spectral libraries of all kinds of materials: natural materials, manmade materials, all kinds of chemicals. So, over the last decade or so, people have been working on developing a plastics library of spectra signature. It’s not complete, and it’s not always perfect, but for a lot of the particles we’re able to see their spectral signature and then match that signature against libraries of known materials. It can be really hard to identify microplastics visually because especially in really organic, active environments, everything gets covered in mud and a film of biological growth. But using the FTIR we are usually able to identify them.
DRI: What other challenges do you come across in the lab and while doing your fieldwork?
Koslozski: The methods aren’t set in stone yet. Everyone’s constantly trying to come up with a better and different way to do things. But that means it can be hard to compare results between studies. Some particles are so small that our instruments can’t detect them. Right now, we can only look at particles down to about 20 microns. Being able to see even smaller particles would be amazing, because we know the smallest particles are the most ubiquitous. If you took a sample of water from a site, and you broke it up just by size categories, as you get smaller, you’d find more and more. One of the biggest problems is the sheer volume of particles in this small size category, because they’re really difficult to measure and really difficult to identify. But they’re also important.
Another big challenge is getting the microplastics out of the material we found them in and separating them from the soil and clay particles. It’s just a time consuming and labor-intensive process. Our environment is full of plastic. It’s everywhere: from our clothing to our offices and the air, so we have to be careful about contamination in the lab as well and make sure that our samples are protected.
Above: Rachel takes water samples from the Mekong River in Cambodia.
DRI: In what ways are microplastics hazardous to water systems and the environment?
Kozloski: There have been studies that have shown that microplastics can have an impact on critters that are eating them, blocking digestive tracts and things like that. Filter feeders can accumulate them, and they may be able to transfer up the food chain. But a lot of studies that look at the environmental effects, or the effects on organisms, are using higher concentrations of microplastics than we currently see in the environment. So, it’s hard to take that back and correlate it directly with the amount of plastics that we’re seeing right now in the environment. We do know that microplastics can act as vectors for different chemicals. But as far as the toxicity of the plastics themselves, we’re still finding out.
I think the thing to keep in mind is that we have produced a lot of plastic, and we’re producing more every year. We recycle only about 9% of plastics. The rest go to landfills or get lost in the ocean. And so, everything other than that 9%, every bit of plastic that’s been made in the last seventy years, is still out there in a landfill, or blowing around in the wind, or getting lost in water, and all of that will break down over time into microplastics. The amount of microplastics that we see in the environment right now is only going to keep increasing until we get a handle on the situation.
Above: Rachel sorts out plastics from a fisher’s catch in Cambodia.
DRI: Why is researching microplastic movement and contamination in water systems important in the face of extreme and unpredictable precipitation events, population growth, and climate change?
Kozloski: I think it really comes down to managing the resources that we have, especially considering population growth and climate change. As I said before, we’re seeing more and more plastic produced, and much of that plastic is not managed well and is released into the environment. So, understanding the consequences of our decisions is important, especially when it comes to resources becoming more limited. Groundwater seems like a protected resource since it’s down in the ground. But really understanding how and where there can be movement of those particles between surface and groundwater systems so that we can understand how to protect our groundwater better is important. Also, understanding how microplastics are moving into our surface water systems, including the Truckee River and our terminal lakes in Nevada. Once it goes in there, it’s not coming out. So, we need to be really careful about what’s being released and how we manage it.
Above: Collecting microplastics samples on the Mekong River, Cambodia.
Credit: Monica Arienzo/DRI.
DRI: How will receiving the Fellowship Award impact your work and career, and what research lies ahead?
Kozloski: For me, it’s like living the dream. I’ve wanted to be in research so badly. I love being able to ask hard questions and then just work to find solutions. I have a really curious mind. I think if you talk to any grad student, they will tell you that financially, it’s really tough. Reno is growing like crazy, everything is expensive, and schools really have not been keeping up with the cost of living. This award is life-changing for me and allows me to take care of my family and to continue my work. Before receiving the award, I had been considering whether I needed to take a couple of semesters off and work to rebuild my savings and be able to take care of my obligations as a parent while also pursuing my dream for research. So, for me, this is a huge relief, because it gives me financial security knowing that I’ll be able to continue my program and take care of my family with a lot less stress. At the same time, I recognize that it would be great if everyone could have that kind of security.
DRI: What advice do you have for students who want to pursue graduate school, particularly in hydrology?
I would say if you’re one of those people who is full of questions and loves digging deeply into things, go for it. I feel fortunate to have a great group of people that I work with, an advisor that’s been able to give me these crazy opportunities, and the chance to pursue something that was just taking up space in my brain rent free. For other students out there, there are amazing researchers who are looking for folks to work with them and partner with them on these great questions. And if you are curious minded and want it, go for it. It can be hard in grad school trying to figure out how you’re going to make ends meet, but there are resources available. There are lots of scholarship opportunities. And opportunities to TA and work and fellowships. There are ways to make it happen. You’re not alone in this. You can make it work, and there’s great support to get to where you want to be.
For more information about the microplastics lab at DRI, visit: https://www.dri.edu/labs/microplastics/
May 31, 2023 | Announcements, News releases
California Snowlines On Track To Be 1,600 Feet Higher by Century’s End
May 30, 2023
Reno, Nev.
Shared with permission from Scripps Institution of Oceanography
DRI contributes to research concluding lower-elevation ski resorts could lose more than 70 percent of their natural snow supply
DRI’s Benjamin Hatchett, Ph.D, and Michael Dettinger, Ph.D., coauthored a new study in the journal Climate Dynamics that predicts dramatic changes for California’s future snowpack. The team combined seven decades of temperature and precipitation data with projections about climate change to examine the growing impact of atmospheric rivers, which tend to be warmer than other storms. With less snow in California’s future, there will be wide-ranging impacts on landscapes, ecosystems, and water availability for human communities.
“The snowline is an iconic component of mountains,” Hatchett says. “Its warming-driven upslope retreat poses numerous implications for the aspects of mountain environments we rely on for water resources, ecosystem function, and recreation. As the snowline moves upslope, increased winter runoff will occur at the expense of spring runoff, a change our current water management paradigm is not designed for. A longer snow-free environment will promote more severe wildfire activity at higher elevations and the numerous cascading impacts severe wildfire brings to ecosystems, life and property, and public health. Last, we will see recreation impacts such as shorter ski seasons, less available skiable terrain, and lower flows during the summer and fall, which when combined with other climate change impacts, negatively affects mountain economies.”
Below is the full press release from Scripps Institution of Oceanography.
San Diego – March 25, 2023 –
This winter produced record snowfall in California, but a new study suggests the state should expect gradually declining snowpacks, even if punctuated with occasional epic snowfalls, in the future.
An analysis by Tamara Shulgina, Alexander Gershunov, and other climate scientists at UC San Diego’s Scripps Institution of Oceanography suggest that in the face of unabated global warming, the snowlines marking where rainfall turns to snow have been rising significantly over the past 70 years. Projections by the researchers suggest the trend will continue with snowlines rising hundreds of meters higher by the second half of this century.
In the high Southern Sierra Nevada range, for instance, snowlines are projected to rise by more than 500 meters (1,600 feet) and even more when the mountains get precipitation from atmospheric rivers, jets of water vapor that are becoming an increasingly potent source of the state’s water supply.
“In an average year, the snowpack will be increasingly confined to the peak of winter and to the highest elevations,” the study says.
Diminished snowfall is a consequence of a changing climate in which places like California will get an increasing portion of their winter precipitation as rain instead of snow. The authors said this study and related research suggest water resource managers will need to adapt to a feast-or-famine future. California’s water supply will arrive less through the gradual melt of mountain snowpack that gets the state through hot summers and more via bursts of rain and runoff delivered by atmospheric rivers, which are boosted by warming and are associated with higher snowlines than other storms.
Such events will further complicate the balancing act between protecting people and infrastructure from winter flooding and ensuring enough water supply during warmer summers.
“This work adds insight into the climate change narrative of more rain and less snow,” said California Department of Water Resources (DWR) Climatologist Mike Anderson. “DWR appreciates our partnership with Scripps to help water managers develop, refine, and implement adaptation efforts as the world continues to warm and climate change impacts are realized.”
The study, funded by the U.S. Bureau of Reclamation and the DWR, appears in the journal Climate Dynamics.
“This is the longest and most detailed account of snow accumulation in California,” said Gershunov, “resolving individual storms over 70 years of observed weather combined with projections out to 2100.”
The authors make note of what this could mean for ski resorts around the state if climate change progresses unabated. For example, Mammoth Mountain, at an elevation between 2,400 and 3,300 meters (7,900 – 11,000 feet), is projected to receive 28 percent less snowfall in the latter half of the century. Lower elevation ski resorts such as Palisades and Northstar, both near Lake Tahoe, span elevational ranges of around 1,900 and 2,700 meters (6,200 – 8,900 feet). They are projected to lose more than 70 percent of their snow accumulation in an average winter.
“Observations and future climate projections show that already rising snowlines will keep lifting,” said Gershunov. “Epic winters will still be possible, though, and unprecedented snowfalls will ironically become more likely due to wetter atmospheric rivers, but they will be increasingly confined to the peak of winter and to the highest elevations of the Southern Sierra Nevada.”
Study co-authors include Kristen Guirguis, Daniel Cayan, David Pierce, Michael Dettinger, and F. Martin Ralph of Scripps Oceanography, Benjamin Hatchett of the Desert Research Institute of Reno, Nev., Aneesh Subramanian of University of Colorado at Boulder, Steven Margulis and Yiwen Fang of UCLA, and Michael L. Anderson of the California Department of Water Resources.
May 11, 2023 | Announcements, News releases
Scientists Discover Fire Records Embedded Within Sand Dunes
May 11, 2023
Reno, Nev.
Above: The Cooroibah wildfire sweeps down the Cooloola Sand Dunes in Australia. Photo by Michael Ford
Fire History
Paleoclimate Research
The discovery could expand scientific understanding of fire histories
to arid regions around the world
Knowing how the frequency and intensity of wildfires has changed over time offers scientists a glimpse into Earth’s past landscapes, as well as an understanding of future climate change impacts. To reconstruct fire records, researchers rely heavily on sediment records from lake beds, but this means that fire histories from arid regions are often overlooked. Now, a new study shows that sand dunes can serve as repositories of fire history and aid in expanding scientific understanding of fire regimes around the world.
Published May 11 in Quaternary Research, the study is the first to examine sedimentary records preserved in foot-slope deposits of sand dunes. The research team, led by Nicholas Patton, Ph.D., a postdoctoral researcher now at DRI, studied four sand dunes at the Cooloola Sand Mass in Australia. Australia is one of the world’s most fire-prone landscapes, with a long history of both natural and cultural burning, and vast expanses without lakes or ponds to gather sedimentary records from. The researchers aimed to prove that these sand dune deposits could be used to reconstruct reliable, multi-millennial fire histories. These previously unrecognized archives could potentially be used in arid regions around the world to fill knowledge gaps in places where fire shapes the landscape.
“Many fire and paleoclimate records are located where there’s a lot of water bodies such as lakes, peats, and bogs,” Patton says. “And because of this, most global models really have a bias towards temperate regions.”
Above: An illustration showing how charcoal layers accumulate in dune foot-slope deposits. Credit: Nicholas Patton/DRI
The Cooloola Sand Mass consists of enormous – up to 240-meter-tall – sand dunes that build up at the coast and gradually shift inland from the power of the wind. By identifying the age of the dunes using a technique called optically stimulated luminescence dating, or OSL, Patton’s team found that the four dunes span the Holocene, representing the last approximately 12,000 years.
Once a dune is stable, meaning it is no longer growing but slowly degrading, the force of gravity acts on the dune slopes to collect falling sand at the base, along with the remnants of charcoal from local fires that deposited on the dune’s surface. This sediment builds up over time, layering charcoal from fire events that can be reliably identified using radiocarbon dating.
“We were digging soil pits at the base of the dunes and were seeing a lot of charcoal – more charcoal than we expected,” says Patton. “And we thought maybe we could utilize these deposits to reconstruct local fires within the area.”
Patton found that on the younger dunes (at 500 years old and 2,000 years old), charcoal layers represented individual fires, because the steep slope of the dunes quickly buried each layer. However, the older dunes (at 5,000 years old and 10,000 years old) had more gradual slopes that blended charcoal from different fires over time, providing a better understanding of periods of increased or decreased fire frequency.
The dunes offered localized fire histories from within an approximate 100-meter radius, so fire records vary somewhat amongst the four dunes, which spanned approximately 2 kilometers. However, Patton’s team compared their results to other fire records from the region found in lake and swamp deposits. Similar to the regional records, their findings showed three major periods of fire activity over the past 7,000 years.
The researchers write that similar records are likely held in sand dunes around the world, and that regions like California and the Southwest U.S. could benefit from a better understanding of regional fire history. Embedded within the fire records is not only information about natural wildfires, but also the way that humans influenced fire regimes.
“Fire histories are important for understanding how fire was used in the past for cultural purposes, whether that was to clear fields for agriculture or for hunting,” Patton says.
Patton hopes to continue this line of research at other dunes near the Cooloola Sand Mass that are nearly 1 million years old to obtain a long-term fire history for the region. Because Australia has had human communities for at least 60-70 thousand years, and quite possibly longer, these records could help understand the relationship between humans and historical fire regimes.
“These kinds of long-term records aren’t always available within lake sediments, but they might be available within these dune deposits,” Patton says. “That’s pretty exciting.”
###
More information: The full study, Reconstructing Holocene fire records using dune foot-slope deposits at the Cooloola Sand Mass, Australia, is available from Quaternary Research.
DOI: https://doi.org/10.1017/qua.2023.14
Study authors include: Nicholas Patton (DRI/Univ. of Canterbury, NZ/Univ. of Queensland, AUS), James Shulmeister (Univ. of Canterbury, NZ/Univ. of Queensland, AUS), Quan Hua (Australian Nuclear Science and Technology Organization), Peter Almond (Lincoln University, NZ), Tammy Rittenour (Utah State Univ.), Johanna Hanson (Univ. of Canterbury, NZ), Aloysius Grealy (Univ. of Queensland, AUS), Jack Gilroy (Univ. of Queensland, AUS), Daniel Ellerton (Univ. of Queensland, AUS/Stockholm Univ.)
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
May 8, 2023 | Announcements, News releases
DRI Aims to Increase Scientific Access to Earth Monitoring Data With Re-Launch of ClimateEngine.Org
Satellite Data
Climate Data
ClimateEngine.org allows researchers and natural resource managers to easily analyze and visualize complex satellite and climate data, helping users understand change
in Earth’s landscapes over time
The combined use of satellite and climate data has rapidly become critical for scientists and resource managers seeking to accurately assess changes in land cover and land use over time and across space. Unfortunately, processing such vast amounts of data can be time and cost-prohibitive, which is why researchers teamed up with Google and federal agencies to create ClimateEngine.org. Climate Engine’s innovative web application allows scientists, natural resource agencies, and other users to create maps and time series plots that integrate satellite and climate data, providing an indispensable — and free — tool for visualizing complex datasets.
“If you’re trying to study how climate and natural resource management affects the environment, nothing beats the combination of maps and time series for unpacking the data,” says Justin Huntington, Ph.D., Climate Engine project lead and research professor of hydrology at DRI.
First launched in 2016 at the White House Water Summit, ClimateEngine.org is being re-launched with new datasets, support resources, and functionality to increase the capabilities and user-friendliness of the site. Interactive maps and data visualizations produced using decades of satellite data have been a cornerstone of the ClimateEngine.org app, and the new updates will make it easier than ever to use satellite, climate, and forecast data together. These enhanced resources will help Climate Engine’s diverse user community — which includes 12,000+ registered users from public agencies, non-profits, research institutions, and tribal governments — to better use the app to produce charts and maps of environmental indicators such as drought, fire risk, vegetation condition, and agricultural water use.
Above: The Climate Engine web application provides on-demand mapping and plotting of hundreds of climate and satellite variables, enabling real-time analysis and monitoring of vegetation, drought, snowpack, and other important environmental conditions.
“As researchers trying to process and visualize many Earth observations together, we understand how difficult it can be to work with these large and disjointed datasets,” Huntington says. “So, we wanted to create a tool that would allow researchers and practitioners to spend more time making discoveries and impact using the best available science.”
The Climate Engine app is unique in that it enables users to visualize and analyze vast amounts of data without the need to code, and results can be downloaded, shared, and recreated with a simple link. It overcomes the computational barriers many research institutions and public agencies face when using large datasets by using Google Earth Engine’s parallel cloud computing platform.
Notable datasets recently added include: 1) ERA5 Ag, which enables calculation of global drought, snowpack, and water demand indicators in near real-time; 2) Rangeland Analysis Platform, a 37-year Landsat dataset of vegetation cover and biomass production for the continental U.S.; and 3) OpenET monthly evapotranspiration, which provides Landsat satellite maps of vegetation water use at field-scale across the Western U.S.
As one of Climate Engine’s primary partners, NOAA’s National Integrated Drought Information System (NIDIS) uses the Climate Engine Application Programming Interface (API) to automatically create drought datasets shared on Drought.gov.
“Climate Engine is a powerful cloud solution that has enabled NOAA to rapidly create and disseminate critical climate and drought information in ways that were previously impossible,” says Steve Ansari, physical scientist with NOAA’s National Centers for Environmental Information. “The initial Faculty Research Award by Google, followed by funding from NOAA-NIDIS and other federal agencies, has led to a very fruitful and rewarding public-private partnership.” This partnership will continue to produce new datasets, processing capabilities, stakeholder engagement, and web application and API enhancements to advance research, drought monitoring, and early warning.
Above: The Climate Engine API is used by NOAA’s National Integrated Drought Information System to automatically update real-time drought maps featured on Drought.gov.
The Bureau of Land Management (BLM) was also an early supporter of ClimateEngine.org due to the agency’s need to adopt a more data-driven approach to monitoring drought and informing grazing decisions. BLM has positioned itself as a leader in monitoring of federal lands through its investment in ground and satellite-based vegetation monitoring. Among other contributions, the agency supported the development of field–scale trends of drought and vegetation conditions within the Climate Engine web application. BLM is continuing to support trainings and integration of the newest datasets into Climate Engine to provide resource managers with the latest information and science on drought and vegetation conditions.
Above: Many advanced calculations are available within the Climate Engine web application, such as per-pixel trends and confidence levels that can be applied to all datasets, including Rangeland Analysis Platform vegetation cover and production data, to assess change over time.
Moving forward this summer, the ClimateEngine.org team will be adding even more features and functionality to the app, further expanding access to the API, and hosting several public agency webinars and in-person workshops across the Western U.S.
ClimateEngine.org is a collaboration between DRI, UC Merced, Google, and federal partners. The science team includes: DRI researchers Justin Huntington, Britta Daudert, Jody Hansen, Thomas Ott, Kristen O’Shea, Charles Morton, Dan McEvoy, and Eric Jensen, as well as UC Merced researchers Katherine Hegewisch and John Abatzaglou. Find out more about the initiative, partnerships, and updates at ClimateEngine.org and Twitter @ClimateEngOrg, and see the initiative’s peer-reviewed publication.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Apr 25, 2023 | Announcements, News releases
Climate Change is Already Impacting Stream Flows Across the U.S.
April 25, 2023
Reno, Nev.
DRI researchers examined more than 500 watersheds across the country and found that increased winter temperatures are driving more extreme fluctuations in streamflow
Climate change is here, and scientists continue to discover new ways that the world around us is changing. In a new study published in the May issue of the Journal of Hydrology, DRI researchers show that altered weather patterns are impacting stream flows across the country, with implications for flooding, drought, and ecosystems.
Led by Abhinav Gupta, Ph.D., a Maki postdoctoral fellow at DRI, the research examined how day to day variations in streamflow changed in more than 500 watersheds in the U.S. between 1980 and 2013. They found that increased winter temperatures have driven the changes, with impacts varying due to local climate and amongst snow and rain-dominated watersheds. This information is important, the researchers say, for helping water managers adapt to climate change’s impacts.
“We wanted to understand how climate change has impacted the hydrological balance across the U.S. based on the observed data,” Gupta says. “Once we understand how climate change has impacted stream flows in the recent past, we can figure out what kind of changes we might see in the future.”
Streams receive water from a variety of sources, including fast, direct input from rainfall, and groundwater that gradually seeps through springs and soil. To understand how climate change is altering stream flows over time, the authors needed to differentiate between normal variability, like seasonal changes, and longer-term trends. To do this, they broke down stream inputs into events that occur at different timescales, like hourly and daily (rainfall), vs monthly and annual (groundwater). Then, they looked at trends for each timescale to see how they changed over time.
“Once we understand how these trends are evolving, we can make educated guesses about what exactly is changing in the watershed – whether it is snowmelt, surface runoff, base flow, or one of many other factors,” says Gupta. “Without studying streamflow in this way (what is called streamflow statistical structure) it’s not possible to study all of these components together, at once.”
Their results show that snow-dominated watersheds across the country are receiving more precipitation as rain than historically. This means that streams now have more water coming in short bursts from rainstorms, rather than the slow trickle of melting snow. The shift to short-term stream inputs could also be attributed to faster snowmelt rates due to higher temperatures, the authors say.
“In the past, streamflow changed very slowly over time,” Gupta says. “But now, because of climate change, we have faster fluctuations in streamflow, which means that we can have a lot of water in a very small amount of time and then we can have no water for a long period of time. These extreme swings are occurring more and more.”
Although the researchers found increased temperatures and changes in rainfall in all watersheds, differences in local climate dictate how this influences streamflow. In humid locales like Florida and the Pacific Northwest, storm inputs decreased, as higher temperatures caused more evaporation, leading the soil to absorb more rainwater. In the Great Plains and Mississippi Valley, contributions to streams from slow, long-term inputs like groundwater are very low, likely also due to high evaporation rates. Arid watersheds saw an increase in the number of days each year without rainfall over the study period, as well as a significant increase in winter temperatures, making streamflow more sporadic.
The study didn’t examine other variables that could impact how water moves through watersheds, like changes in forest cover that impact the amount of water used by plants, or soil type, which affects how quickly rainfall permeates into groundwater. Because each watershed is unique, with its own recipe of soil type, climate, and forest cover, “we cannot paint everything with the same brush,” Gupta says. “We need different strategies for different watersheds to adapt to changes in climate. Even within the same region, watershed impacts can vary.”
More research is needed, the study authors say, to understand what is driving changes in streamflow. If streams are increasingly dependent on groundwater, this could impact how water managers regulate groundwater pumping for human use. “That’s the kind of thing we need to know moving forward, in terms of how we manage our water resources,” says Sean McKenna, Ph.D., study co-author, and Clark J. Guild, Jr. Endowed Chair and Director of hydrologic sciences at DRI. “Can we pump more groundwater, or do we need to be more careful because if we do, we could lose streamflow?”
Gupta says that he plans to build on this research. “Based on this study, we have been able to identify watersheds across the U.S. that have changed. Now that we know which watersheds in our dataset have been affected by climate change, we can look at the future changes in those watersheds.”
More information: Changes in streamflow statistical structure across the United States due to recent climate change is available from the Journal of Hydrology. DOI: https://doi.org/10.1016/j.jhydrol.2023.129474
Study authors include: DRI researchers Abhinav Gupta, Rosemary Carroll, and Sean McKenna
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Apr 4, 2023 | Announcements, News releases
DRI and the Springs Preserve Launch Adult Science Education Series
April 4, 2023
Las Vegas, Nev.
Header Photo: The Springs Preserve in Las Vegas, NV. Photo by Renee Grayson (CC by 2.0)
DRI Science at the Springs –a new multimedia science storytelling series– explores environmental research, personal narratives, and climate solutions
DRI, in partnership with the Springs Preserve, announces the launch of DRI Science at the Springs. In the series, which launches on April 20, DRI scientists and other guests address some of the world’s most urgent concerns while also telling the tale of what it means to live in Nevada on the front lines of a changing climate.
“We are excited to partner with the Springs Preserve in launching an adult science education opportunity, specifically related to weather, climate change, and resiliency,” said DRI President Kumud Acharya. “DRI Science at The Springs will explore environmental research, personal narratives, and climate solutions to address some of our most challenging environmental issues. We invite Southern Nevadans to join us for an unforgettable multimedia and storytelling experience that highlights the innovative research and solutions being implemented to address our pressing climate issues.”
“We’re excited at the opportunity to join with DRI to expand on the educational programs presented at the Springs Preserve,” said Andy Belanger, director of public services. “This program provides an invaluable platform for us to continue educating and informing the community about the importance of science and how it touches our lives each day.”
In 2023, DRI Science at the Springs will hold four events at the Springs Preserve’s Big Springs Theater:
The Water Toolkit – Thursday, April 20, doors open at 6pm, presentation begins at 7pm
As society grows increasingly concerned about the future of our water resources, DRI Science at the Springs offers a refreshing perspective. From the science of cloud seeding to the art of aquifer recharging, from the importance of urban forestry to the vital role of irrigation, this inaugural event is a unique opportunity to be at the forefront of the conversation about water and its future.
The Art of Science – Thursday, June 15, doors open at 6pm, presentation begins at 7pm
This evening is designed to highlight the intersection of creativity and science, and explore how the two often seemingly antithetical disciplines can lead to some of the most beautiful, innovative, and impactful solutions. This is a one-of-a-kind opportunity to broaden your understanding of the world and the role that science and art play in shaping it. You’ll leave the event with a deeper appreciation for the beauty that can be found in the scientific process, and how it can inspire us all to think more creatively about the world around us.
History Written in Ice – Thursday, August 24, doors open at 6pm, presentation begins at 7pm
This evening is dedicated to exploring the incredible story of ice core researchers and their journey to the arctic to extract ice cores that hold within them evidence of past societies, volcanic eruptions, and even plagues. You’ll learn about the incredible lengths that researchers go to in order to extract these cores, the technological advances that have made this work possible, and the impact that their discoveries have had on our understanding of history.
Beyond the Horizon – Thursday, October 5, doors open at 6pm, presentation begins at 7pm
In this final event in our season, DRI Science at the Springs departs from Earth and takes you on a journey to explore the beyond. Join our speakers as they share stories and research of hitchhikers on the International Space Station, how a symbiotic relationship between a fungus and bacteria might be the key ingredient in developing a sunscreen for the Red Planet and more.
DRI Science at the Springs is made possible through generous support from our sponsors Nevada Health Link and CORE Construction.
Ticket Types and Pricing:
Single Event Pricing
$25 Non-member
$20 Springs Preserve Members
$15 Springs Preserve Donor Members – (Gold and Platinum donor members receive a free pair of tickets to one of the four events)
Series Pricing (tickets to all four speaking engagements, limited amount)
$80 Non-members
$65 Springs Preserve Members
$50 Springs Preserve Members Donor Members
Tickets may be purchased through the Springs Preserve website or at the door the evening of the event.
DRI Science at the Springs is an adult-only (over 21) event. There will be a no-host beer and wine bar and snack shop. Food and beverage are not included in the ticket price.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About Springs Preserve
Located at the site of Las Vegas’ original water source, the Springs Preserve is a 180-acre cultural institution that celebrates Las Vegas’ dynamic history while focusing on its sustainable future. Visitors to the Springs Preserve will discover boundless opportunities to explore ancient and modern history, natural landscapes, archaeological sites, native plants and animals, and current water resource challenges. The campus includes the OriGen Museum, Nevada State Museum, two interactive exhibition spaces (WaterWorks and Boomtown 1905), a colorful botanical garden, art gallery, kids’ learning center, natural trails system, restored wetlands, seasonal butterfly habitat, preserved historical structures, and trackless train rides.. For more information, please visit www.springspreserve.org.
Mar 29, 2023 | Announcements, News releases
A Reconstruction of Prehistoric Temperatures for Some of the Oldest Archaeological Sites in North America
March 29, 2023
Reno, Nev.
Header Photo: View of autumn in Wrangell St. Elias National Park, Alaska
Scientists used a new technique that examines temperature records stored in bacteria to better understand the environmental conditions that may have led to the earliest human migrations into the Americas
Scientists often look to the past for clues about how Earth’s landscapes might shift under a changing climate, and for insight into the migrations of human communities through time. A new study offers both by providing, for the first time, a reconstruction of prehistoric temperatures for some of the first known North American settlements.
The study, published in Quaternary Science Reviews, uses new techniques to examine the past climate of Alaska’s Tanana Valley. With a temperature record that reaches back 14,000 years, researchers now have a glimpse into the environment that supported humans living at some of the continent’s oldest archaeological sites, where mammoth bones are preserved alongside evidence of human occupation. Reconstructing the past environment can help scientists understand the importance of the region for human migration into the Americas.
“When you think about what was happening in the Last Glacial Maximum, all these regions on Earth were super cold, with massive ice sheets, but this area was never fully glaciated,” says Jennifer Kielhofer, Ph.D., a paleoclimatologist at DRI and lead author of the study. “We’re hypothesizing that if this area was comparatively warm maybe that would have been an attractive reason to come there and settle.”
Kielhofer conducted the research during her doctoral studies at the University of Arizona, and was attracted to the Alaska location because of the wealth of research expertise being focused on the area. She also saw an opportunity to contribute to scientific understanding of a part of the world that is particularly sensitive to global climate change.
“We have to look to the past to try to better constrain how these areas have responded previously,” she said, “and how they might respond in the future under climate scenarios that we predict.”
Earlier research had relied on coarse temperature records by examining changes in vegetation and pollen. However, this information can only provide a general sense of whether a region was warming or cooling over time. To obtain a more precise history of temperatures, Kielhofer examined soil samples from the archeological sites. Using a technique known as brGDGT paleothermometry, she examined temperature records stored in bacteria to obtain a record of mean annual air temperature above freezing with a precision within about 2.8 degrees Celsius.
“Bacteria are everywhere,” she said. “That’s great because in areas where you might not have other means of recording or assessing past temperature, you have bacteria. They can preserve for millions of years, so it’s a great opportunity to look at pretty much anywhere on Earth.”
The results were surprising, she said, because many scientists had previously believed that the region experienced large swings in temperature, which may have contributed to the movement of early humans. But Kielhofer’s data showed that temperatures in the Tanana Valley remained fairly stable over time.
“The region wasn’t really responding to these global scale climate changes as we might expect,” she said. “Because temperatures are really stable through this record, we can’t necessarily use temperature as a way to explain changes in human occupation or adaptation through time, as scientists have previously tried to do.”
Kielhofer’s now turning her attention to other historical records, like changes in aridity, that could help explain how conditions in this region influenced early human communities.
###
More information: The full study, BrGDGT temperature reconstruction from interior Alaska: Assessing 14,000 years of deglacial to Holocene temperature variability and potential effects on early human settlement, is available from Quaternary Science Reviews. https://doi.org/10.1016/j.quascirev.2023.107979
Study authors include: Jennifer Kielhofer (DRI/University of Arizona), Jessica Tierney (Univ. of Arizona), Joshua Reuther (Museum of the North, Univ. of Alaska Fairbanks), Ben Potter and Charles Holmes (Univ. of Alaska Fairbanks), François Lanoë (Univ. of Arizona), Julie Esdale (Colorado State), Matthew Wooller and Nancy Bigelow (Univ. of Alaska Fairbanks).
Above: Jennifer Kielhofer sampling for charcoal and biomarkers (GDGTs) at Keystone Dune in Alaska, one of the study sites as well as one of the older archaeological sites in the area (dating back ~13,000 years).
Mar 21, 2023 | Announcements, News releases
New Study Sheds Light on Ancient Microbial Dark Matter
March 21, 2023
Reno, Nev.
Shared with permission from the University of Nevada, Las Vegas
Omnitrophota
Microbial Dark Matter
Header Photo: Obsidian Pool in Yellowstone National Park. Credit: Bob Lindstrom. Photo in the Public Domain
DRI contributes to international team of scientists that unearths first in-depth look at Omnitrophota, one of the world’s oldest and tiniest
DRI’s Duane Moser, Ph.D., is a coauthor on a new study in Nature Microbiology that offers the first detailed analysis of a globally prominent, but poorly characterized type of bacteria belonging to a group scientists refer to as “microbial dark matter.” Formally described here for the first time as the Omnitrophota, the existence of this phylum of bacteria was first inferred from environmental DNA nearly thirty years ago.
“This paper illuminates the properties and ecological function of a group of ubiquitous, but poorly understood organisms,” said Moser, associate research professor of microbiology.
Moser’s contribution to the study included identifying field sites and collecting samples, as well as developing an understanding of environmental context. His long-standing research relationship with the lead authors of the study meant that collaborative projects over the years led to a number of useful datasets for the analysis.
“The research community has followed the Omnitrophota story since the 1990s, when earlier groundbreaking studies that revealed unexpected diversity within Archaea at Obsidian Pool in Yellowstone National Park were expanded to include bacteria,” Moser says. “In those days, full genomes of uncultivable microorganisms were beyond the reach of available technologies, so a conserved gene that encodes an essential structure shared by all cellular life (the 16S rRNA gene) was used to identify novel life and estimate relatedness between organisms.”
“What scientists found was so different from anything that had been described previously that scientists of the time proposed that Omnitrophota might be a novel phylum within Bacteria (the equivalent of the evolutionary difference between plants and animals). This interpretation has stood the test of time,” Moser continued.
“Over the past several decades, Omnitrophota has been frequently encountered in aquatic and soil samples worldwide. In our own work in springs, mines, and shallow groundwaters, Omnitrophota have often been among the more prominent microbial groups detected. I sometimes wonder if the sheer abundance and evident diversity of this omnipresent group has intimidated researchers from tackling its formal description. This was an ambitious project that required the combined expertise of a strong team of collaborators.”
Brian Hedlund, a microbiologist at the University of Nevada, Las Vegas, and lead author of the study, said “Duane’s knowledge of the geology and hydrology of subsurface environments — and how to sample them meaningfully — was really important for this study.”
Below is the full press release from the University of Nevada, Las Vegas.
LAS VEGAS – March 16, 2023 – Bacteria are literally everywhere – in oceans, in soils, in extreme environments like hot springs, and even alongside and inside other organisms including humans. They’re nearly invisible, yet they play a big role in almost every facet of life on Earth.
Despite their abundance, surprisingly little is known about many microorganisms that have existed for billions of years.
This includes an entire lineage of nano-sized bacteria dubbed Omnitrophota. These bacteria, first discovered based on short fragments of DNA just 25 years ago, are common in many environments around the world but have been poorly understood. Until now.
An international research team produced the first large-scale analysis of more than 400 newly sequenced and existing Omnitrophota genomes, uncovering new details about their biology and behavior. The team’s findings are reported in the March 16 issue of the journal Nature Microbiology.
“We now have the most comprehensive view to date of the biology of an entire phylum of microorganisms and the surprising role they play in the Earth’s ecosystems,” said UNLV microbiologist Brian Hedlund, the study’s corresponding author. “There is a finite number of major lineages of life on our planet, and it’s exciting to learn more about organisms that pre-date plants and animals and have been essentially hidden under our noses.”
The tricky thing with Omnitrophota is that they’re still largely considered microbial dark matter, which means they exist in nature but can’t yet be cultivated as single species in lab studies. Just two species have been microscopically observed, and only very recently.
To present a comprehensive picture of their biology, scientists compared 349 existing and 72 newly mapped genomes of Omnitrophota. This included a review of publicly available data and new samples collected from geothermal environments, freshwater lakes, wastewater, groundwater, and springs located around the world.
The team observed that, in most cases, Omnitrophota measure less than 450 nanometers, which places them among the smallest of all known organisms. They also displayed genetic markers consistent with symbiosis – possibly as predators or parasites of other microorganisms, which suggested they would have high metabolic rates. Indeed, when isotope uptake was measured as a proxy for metabolic activity, Omnitrophota were hyperactive.
“Despite how little we collectively knew about Omnitrophota, they’ve long been cited by microbial ecologists. Our goal was to finally drag this lineage out of the dark,” said Cale Seymour, a recent UNLV master’s graduate and the study’s lead author. “The more we learn about their energy conservation pathways and possible lifestyles, the closer we get to our goal of cultivating them in the lab and bringing them into the light.”
The study, “Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota,” appeared March 16 in the journal Nature Microbiology. Additional collaborating organizations include Bigelow Laboratory for Ocean Sciences, the University of North Alabama, the U.S. Department of Energy’s Joint Genome Institute, Desert Research Institute, Northern Arizona University, Sun Yat-sen University, University of Science and Technology of China, and University of Queensland.
Mar 15, 2023 | Blog, Featured researchers
Making it Snow: A Brief History and Review of the Science Behind Cloud-Seeding
Cloud seeding
Atmospheric Research
Above: DRI researchers at cloud-seeding stations in the mountains.
Clouds – those enigmatic formations of condensed water vapor which drift above our heads, forming rivers in the sky – can take many forms. They can be wispy and non-threatening, dark and menacing, towering or diaphanous. We tend to think of them as beyond human reach, as harbingers of forces outside of our control, but as scientists learn more about them, it’s increasingly clear that humanity isn’t merely subjected to whatever weather a cloud portends – we also create and influence it through our everyday actions. And scientists now regularly harness their moisture and pull it to Earth, bringing water to parched communities and landscapes around the world.
This rain-inducing technique, called cloud-seeding, has been around for more than 60 years. The process involves “seeding” existing clouds with a harmless substance called silver-iodide to give water droplets a particle to converge around, allowing them to form an ice crystal. Every snowflake you’ve ever seen has initially formed this way – a small speck of dust or pollen floating around the atmosphere collects freezing drops of water, forming the intricate designs that we’re familiar with. The only difference between cloud-seeding and natural precipitation is that instead of dust or pollen, the nucleus of the ice crystal is a tiny particle of silver iodide that scientists released into the cloud. Although not a panacea for drought-stricken regions, cloud-seeding can increase seasonal precipitation by about 10%. In the Reno area alone, winter cloud-seeding efforts are estimated to add enough water to supply about 40,000 households for a year.
Microscopic view of snowflakes by Wilson Bentley. From the Annual Summary of the Monthly Weather Review for 1902. Bentley was a farmer whose hobby was photographing snowflakes. Source: NOAA Photo Library archives Weather Wonders collection, www.photolib.noaa.gov.
DRI researchers first joined pioneering efforts to draw more precipitation from otherwise reluctant clouds in the early 1960s, using it to increase the mountain snowpacks that supply much of the West’s water. Today, our scientists continue cloud-seeding efforts around Nevada, including in the Sierra Nevada mountains near Reno, the Spring Mountains near Las Vegas, and the Ruby Mountains near Elko. To bolster the snowpack feeding the Colorado RiverDRI runs additional cloud-seeding efforts in Colorado.
“I feel really passionate that we can improve water resources across the Western U.S. with these cloud-seeding programs,” said Frank McDonough, DRI’s cloud-seeding program director. “And we can run them relatively inexpensively. It’s really the only way to add precipitation to a watershed.”
Above: A map of DRI’s cloud-seeding locations around Nevada. DRI also has operations in Colorado.
Cloud-seeding in a time of increasing drought
Nevada is the driest state in the nation, with the statewide precipitation average a mere 10.3 inches — only about a third of the nationwide average of 30 inches. The rest of the Western U.S. isn’t faring much better, as the 21st century has been a time with the most severe drought in 1,200 years.
Scientists examined tree rings to decipher the historical record for soil moisture across the region, finding that the years 2002 and 2021 were among the driest. Although historical records tell us the Western U.S. is prone to fluctuations in climate, the growing greenhouse effect of burning fossil fuels is exacerbating drying conditions. In 2022, DRI researchers published a study showing that as temperatures rise, the atmosphere pulls more moisture from streams, soils, and vegetation – what’s known as “atmospheric thirst.” Under these conditions, even consistent levels of precipitation will result in less available water for humans and ecosystems.
We see the effects of this playing out before us as the country’s largest reservoirs, Lakes Mead and Powell, are at their lowest levels on record. As of February 2023, Lake Mead stood at about 70% empty, while Lake Powell was little more than 20% of capacity. Under these arid conditions, and with so much uncertainty surrounding water availability from season to season and year to year, cloud-seeding is one tool to help alleviate some of the human and ecological impacts of persistent drought.
“Now, it’s not going to solve all our problems, because we need storms in the area to do cloud seeding,” McDonough says. “But I think that cloud seeding and making clouds more efficient at producing precipitation is a huge tool in water managers’ tool belt.”
As the impacts of climate change reduce mountain snowpacks around the arid West and the world, the Intergovernmental Panel on Climate Change (IPCC) has recommended cloud-seeding as one way to help communities adapt to drier climates.
DRI researcher Patrick Melarkey performs maintenance on weather monitoring equipment in the Sierra Nevada Mountains above Lake Tahoe.
The complex science of cloud formation
Cloud formation is a complicated field of research, and scientists are still learning about the way that water droplets and ice crystals interact with atmospheric particles to produce the many different types of clouds we observe. However, one thing is clear: without microscopic particles for water vapor to latch onto — like dust or salt from the sea — clouds cannot form.
Small particles of water scatter in the air and require another speck of something microscopic in order to come together into larger, more visible water droplets. The effect is demonstrated well in a simple video taken in 2008 by scientists in the Arctic, who show that their breath fails to form visible water vapor due to the low atmospheric particle count (at sea, in areas with little to no wind, atmospheric aerosol levels are very low). They then proceed to steep a cup of tea, which also fails to form much of a visible cloud as the tea evaporates into the cold air. But when they spark a lighter over the top, small particles produced during fuel combustion grab onto the surrounding water vapor and a small cloud forms instantly.
Due to this relationship between water vapor and atmospheric aerosols, human activities impact clouds in a number of ways. Atmospheric aerosols now include a wide range of pollutants produced by industrial emissions, tiny bits of plastics and rubber that wear from car tires and brakes, and vehicle tailpipe emissions.
Not all atmospheric aerosols have the same impact on clouds. Research has shown that air pollution can prevent rainfall, because the water droplets in polluted clouds are too small – they float around in the atmosphere without merging to form large enough droplets to fall to the ground. A single drop of precipitation requires more than one million of these small droplets to converge. These pollutants can also prevent ice formation in subfreezing clouds. This means that our everyday activities in urban and industrial areas are already altering global rainfall patterns.
“There’s increasing research showing that air pollution is actually having a negative impact on a cloud’s ability to produce precipitation,” McDonough says. “So, in some ways, we’re trying to restore the cloud’s ability to produce precipitation to what it would have been prior to all the air pollution coming in upstream.”
Above: An old Beechcraft C-45 plane that DRI researchers used to seed clouds in 1966. Credit: DRI
A snowstorm in a freezer inspired decades of research
The history of cloud-seeding begins in the 1940’s with scientists who wanted to understand why ice sometimes accumulated on planes, creating dangerous flying conditions. Realizing they needed to know more about clouds that contain supercooled water (which is below freezing temperature but still in liquid form), researchers at General Electric simulated these conditions with a repurposed home freezer, as shown in this video. When they dropped dry ice into the freezer to mix with the water vapor from their own breath, millions of ice crystals formed, simulating a miniature snowstorm. In 1946, one of these scientists was the first to drop dry ice from a plane, watching as streams of snow fell from the cloud.
Following these initial experiments, the research team (including Bernard Vonnegut, brother to famed author, Kurt Vonnegut) turned to silver iodide for its structural similarity to ice crystals. Silver iodide continues to be used today by DRI researchers, as a harmless substance that effectively creates a central point – or nucleus – for water droplets to converge around.
Although many groups around the world continue to use airplanes for cloud-seeding, DRI scientists turned to a ground-based program after a fatal accident on March 2, 1980. The plane crash killed DRI researchers Peter Wagner, William Gaskell, John Latham, and Gordon Wicks. Following this tragic event, one of DRI’s pioneering experts on cloud-seeding, John Hallett, dedicated his expertise on ice formation in clouds to improving airplane safety.
Hallett was recruited in 1966 to be one of the institute’s founding scientists: with his expertise in atmospheric physics, he helped establish DRI as a worldwide leader in the field. His focus on the behavior of ice in the atmosphere led to the discovery of a key mechanism for the transition of water molecules into ice, which is now known as the “Hallett-Mossop ice multiplication mechanism.” DRI continues to be a leader in cloud-seeding efforts and research around the Western U.S.
Above: A DRI weather monitoring station perched on top of Slide Mountain overlooking Lake Tahoe. Credit: DRI
Measuring success in the chaos of a storm
Taking cloud-seeding from a freezer to the skies meant finding evidence of the technique’s impact in the real world. Measuring the impact of cloud-seeding attempts isn’t simple, as it requires comparing precipitation from seeded and unseeded clouds under identical conditions – hardly an easy task due to the complex nature of the atmosphere and changing conditions over time. However, scientists have found several ways to assess their impact. By sampling levels of silver iodide in a mountain snowpack following cloud-seeding activities, researchers found it incorporated into ice crystals and deposited as snow – evidence that the compound works as an ice nucleating agent. A comprehensive review of available research published in 2019 concluded “clear physical evidence has been obtained that orographic clouds containing supercooled water, when seeded with silver iodide, produce plumes of ice particles that originate downwind of the seeding location and reach the ground through precipitation growth and fallout.”
In 2020, a ground-breaking study known as the SNOWIE project used advanced radar and cloud-measuring technology to show that cloud-seeding coaxed moisture out of supercooled clouds, producing enough snow to fill 282 Olympic-sized swimming pools over approximately two hours. Studies like this allow scientists to build computer simulations that can facilitate more research, overcoming the difficulty of conducting field experiments under challenging conditions.
Clouds with supercooled liquid water often form around mountain ranges as the air rising over them quickly cools with the elevation change. This is why DRI’s cloud-seeding efforts focus on mountain regions, including the Sierra Nevada and Spring Mountains. A small team of researchers, led by McDonough, plants generators in strategic locations for intercepting incoming storm clouds. These generators vaporize silver iodide particles with acetone, allowing them to rise into the air and enter supercooled clouds. The silver iodide causes the tiny drops of water in the cloud to freeze and go on to grow ice crystals large enough for gravity to pull them to the ground. Ground-based cloud-seeding allows the research team to safely and cost-effectively conduct their work, with each acre-foot of water produced only costing a few dollars.
“There’s been a lot of good research done over the last decade or so that has really nailed down how well this works,” McDonough says. “We’re feeling more and more comfortable about our understanding of when cloud-seeding techniques work, and the scope of the impact.”
Above: A DRI cloud-seeding generator and maintenance truck in a wintery, mountain-top setting. Credit: Jesse Juchtzer/DRI
Unfortunately, the internet contains many misleading ideas about cloud-seeding. Below is a series of misconceptions and questions about the common scientific practice.
FAQ:
1. Is cloud-seeding producing so-called “chem-trails”?
No. Those fluffy white lines zig-zagging across the sky are jet contrails, and they are the aviation equivalent of visible plumes of steamy breath on a cold morning. Warm water vapor produced during jet fuel combustion interacts with the cold atmospheric air to create strings of ice crystals that behave like high-altitude cirrus clouds. When a plane passes through an area of high pressure, which leads to low winds and clear skies, the trails will linger. Jet contrails have no connection with cloud-seeding activities.
2. Is cloud-seeding “geoengineering”?
Cloud-seeding is a well-researched and monitored form of small-scale weather modification. Other examples of ways that humans change the weather and the global climate include: driving a car, deforestation, and air pollution from industry.
3. Who is funding cloud-seeding programs?
Cloud-seeding programs occur worldwide. In the Western U.S., state and agency-supported efforts occur across California, Nevada, Colorado, New Mexico, Wyoming, Kansas, Oklahoma, Texas, North Dakota, Utah, and Idaho.
4. Is silver iodide toxic?
No. The silver used in cloud-seeding is silver iodide (AgI, or silver bonded to iodine), which can be confused with other molecular forms of silver. When silver is isolated as an ion (Ag+) it is biologically active, meaning it interacts with bacterial or fungal cell walls — which is why it’s often used for medicinal purposes and for sterilizing drinking water. Silver ion (Ag+) can be hazardous in aquatic environments because it can also interact with proteins and other parts of cell membranes, but silver iodide (AgI), not silver ion (Ag+), is used for seeding clouds. Silver iodide retains its form in water and does not break down into the potentially toxic silver ion. When the silver iodide particle falls to the ground with rain or snow, it separates from the water molecules that formed an ice crystal around it, essentially becoming a speck of dust no different from the silver naturally occurring in the soil.
Although the chemistry can be a bit complicated, you can think of it as the difference between water (H2O) – the life-giving force that forms much of your own body – and hydrogen peroxide (H2O2), which is used as a sterilizer and bleaching agent and is hazardous at high concentrations .
5. Is cloud-seeding used for military purposes?
Following the (now declassified) use of cloud-seeding by the U.S. military during the Vietnam War, a 1977 international treaty banned the use of weather modification in warfare.
6. Does DRI continue cloud-seeding during intense winters like the winter of 2022-2023?
DRI pauses all cloud-seeding activities when the snowpack reaches 150% of the historical average. In the Lake Tahoe region, this means that cloud-seeding activities halted in mid-December, 2022, due to the remarkable amount of natural snowfall occurring.
More information:
The Cloud Seeders
A short video about DRI’s cloud-seeding team
Where to find more water: eight unconventional resources to tap
The Conversation
By Manzoor Qadir and Vladimir Smakhtin, Deputy Director and Director of the United Nations Institute for Water, Environment, and Health
Can cloud seeding help quench the thirst of the U.S. West?
Yale e360
Wintertime Orographic Cloud Seeding—A Review
Journal of Applied Meteorology and Climatology, Vol. 58, No. 10 (October 2019), pp. 2117-2140
Quantifying snowfall from orographic cloud-seeding
PNAS, Vol. 117, No. 10 (February 2020), pp. 5190-5195
Does cloud seeding really work? An experiment above Idaho suggests humans can turbocharge snowfall
Science Magazine
Mar 9, 2023 | Announcements, News releases
First-ever layered lake sediment sample extracted from subglacial Antarctica
March 9, 2023
Golden, Colorado
Shared with permission from the Colorado School of Mines
Subglacial Lakes Antarctica
Header Photo Credit: Matthew Siegfried
Sample gives important details into past dynamics of the Antarctic ice sheet and its cold, dark ecosystems
DRI’s Mark Hausner, Ph.D., is a coauthor on a new study detailing the first layered lake-sediment sample taken from a subglacial lake in Antarctica. Hausner stepped in to assist the project team — dubbed SALSA for Subglacial Antarctic Lakes Scientific Access — after a difficult deployment created challenges in recovering temperature data from their equipment.
“I worked with the team after their return to recover the best temperature data we could,” Hausner says. Although precise temperature observations couldn’t be recovered, Hausner’s expertise with fiber-optic distributed temperature sensing cables enabled him to identify changes in the data that were consistent with other observations.
“Using multiple observation methods really increases your confidence in what you’re seeing,” he says. “In this case, satellite observations, surface geophysics, and the temperature profile through the ice and into the lake all tell the same story of a lake underneath 1 km of ice that’s switching from draining to filling.”
Below is the full press release from the Colorado School of Mines.
Since the discovery 50 years ago of subglacial lakes in Antarctica — some of the least accessible geological features on Earth — scientists have attempted to extract lake bed sediment to learn about the formation, movement, and past conditions of the ice sheet. Now, a team of researchers with the NSF-funded project Subglacial Antarctic Lakes Scientific Access (SALSA) has successfully done so, recovering the first layered sediments from beneath the modern Antarctic ice sheet.
Their findings from analysis of the sediment sample, published March 9 in Geology, give important insight into the larger dynamics of the Antarctic ice sheet and its history, including when the ice sheet was smaller than its current size. Their work adds to the sedimentary record of knowledge of Antarctica and also holds implications for understanding how Antarctica may contribute to global sea level change.
Previous studies of modern subglacial lakes were limited to the timescale of the modern ice sheet due to the challenge of sampling an environment locked beneath thousands of feet of ice. The sediment sample extracted by the SALSA team will allow researchers to better understand subglacial activity across almost two centuries, instead of merely two decades.
“There are places on Earth that we still haven’t explored,” said Matthew Siegfried, assistant professor of geophysics at Colorado School of Mines and a lead author of the paper. “We have now one sample trying to understand an environment that is one and a half times the size of the continental United States. It’s like pulling up a rock in New Orleans and understanding how the Mississippi River and its entire basin has acted for the past 1,000 years.”
The saga of the SALSA team’s quest to explore subglacial lakes is chronicled in “The Lake at the Bottom of the World,” a feature-length documentary film released across multiple streaming platforms on February 28 by the team in partnership with Metamorph Films. The NSF-funded film gives viewers a close look at how the scientists conducted their work amid harsh Antarctic conditions.
‘Like grabbing a package of soup’
Researchers captured the sediment sample on a field expedition in December 2018. They cleanly bored a hole through over 3500 feet of ice over Mercer Subglacial Lake by filling a modified fire hose with sterilized water at nearly 200 °F and aiming it into the ice. They carefully collected sediment cores through a borehole that was constantly freezing back in using a device modified from its typical use in “normal” lakes to fit in a narrow ice borehole.
While researchers knew that even the mere extraction of the sediment from the lake would be a success, the fact that a sample arrived at the lab intact proved even more gratifying.
“We didn’t expect to find this mushy, fragile sediment under the ice sheet,” Siegfried said. “It was basically like grabbing a package of soup, bringing it up 1100 meters to the surface of the ice, shipping it to America, getting it into a CT scanner in Oregon, and somehow maintaining tiny laminations in the sample.”
Previous sediment samples from beneath the modern West Antarctic Ice Sheet have only consisted of a jumbled mixture of marine muds and rocks left behind when glaciers move over the Earth and do not contain a layered history of the region or ice sheet.
“In a 2001 paper published after a decade of subglacial drilling efforts in Antarctica, glaciologist Barclay Kamb somewhat unenthusiastically summarizes that everywhere the project sampled sediments, they found the same uninteresting, sticky, gray mixture,” said Ryan Venturelli, assistant professor of geology and geological engineering at Colorado School of Mines and a lead author on the paper.
“We found that, too. But above that same sticky, gray stuff, we found something different for the first time.”
Understanding subglacial movement
CT imagery of the sample showed a pattern of contrasts that indicated the subglacial lake was filling and draining with water before the scientists’ observational record. This finding offers insight into how long water has been moving under this part of Antarctica — movement that has implications for how the ice sheet moves and contributes to sea level rise. The life cycle of subglacial lakes derived from these contrasts also will enable researchers to better identify how carbon, nutrients and dissolved gasses are transported through the subglacial system to the global ocean.
“We use sediments from normal (subaerial) lakes all the time to build records of regional changes in climate. Subglacial lakes are different, because they are sealed by an overlying ice sheet that shields them from changing seasons and changing climate. Any variation in the subglacial sediment record is driven by changes to the overlying ice sheet and associated water system,” Venturelli said.
“Thanks to satellites that have helped us spy on Antarctica from space since 2003, we have a deep understanding of subglacial lake activity in the modern record, but the sediments we collected as part of SALSA give us an idea of how persistent these features are on a much longer timescale — hundreds of years. It’s our first insight into the life cycle of an active subglacial lake, and that is really exciting,” Venturelli added.
Significance of the sampling effort
The findings shared in Geology come amid more groundbreaking publications from the SALSA team based on the sediment samples they retrieved from Mercer Subglacial Lake. In February, researchers published work in ISME Communications that examined and compared microbial communities in the sediment to other regions under the ice; their work indicated an extensive subglacial ecosystem that is biogeochemically and evolutionarily linked through ice sheet behavior and the transport of microbes, water and sediments. Forthcoming research out soon in AGU Advances, also led by Venturelli, constrains the Antarctic subglacial carbon cycle for the first time and indicates how details of the cycle can be used to estimate how much smaller the West Antarctic Ice Sheet was in the last few thousand years.
“Knowing the dynamics of the ice sheet in the past is critical for predicting how it may respond to changes in the future, but this information has also helped to better understand the connectedness of these ecosystems to processes on the surface and regions beneath deep Antarctic ice that have yet to be explored,” said Brent Christner, a microbiologist at the University of Florida and SALSA Project team member.
Mar 6, 2023 | Blog, Featured researchers
Understanding Rain-on-Snow Events with Anne Heggli
Anne Heggli
Rain on Snow
Extreme Weather
Above: Anne Heggli’s snowpits examining flooding beneath snowpacks in the Sierra Nevada mountains.
The Sierra Nevada Mountain range, as of March 2023, contains a snowpack with more than 200% of an average year’s snowfall. Water managers across California and Nevada, states that rely on the snowpack as the region’s largest supply of fresh water, are celebrating what this means for alleviating some of the worst impacts of a widespread and ongoing drought. But with snowfall occurring at low elevations in unusual places, the possibility for warm atmospheric rivers to cause flooding increases. These storms, called rain-on-snow events, are the focus of DRI’s Anne Heggli, who is studying ways to improve our ability to forecast and prepare for these potentially hazardous storms.
Under the guidance of DRI’s Ben Hatchett, Ph.D., Heggli is working with the Nevada Department of Transportation and the National Weather Service in Reno to build better forecasting tools for rain-on-snow events, which will improve safety alerts and storm preparation across the state. DRI sat down with Heggli to learn more about her work, when rain-on-snow events are the most problematic, and why snowpacks don’t simply absorb rainfall like a sponge.
Above: Anne Heggli inside of a snowpit at the Central Sierra Snow Lab.
DRI: Your Ph.D. work focuses on rain-on-snow events, can you tell us more about that?
Heggli: My Ph.D. work is focused on leveraging existing monitoring networks to try to find ways that we can maximize the investment that we’ve already made to learn about patterns with our snowpack to further our understanding of rain-on-snow processes, and to help inform decision makers on what exactly is happening in the mountains, hour by hour as these rain-on-snow events take place.
I got started with this because a water manager for a hydropower company in California told me that ahead of these atmospheric rivers, she felt like they were flying blind. They had no idea how the snowpack was going to respond.
DRI: And how are you doing that?
Heggli: The western U.S. has this great snow telemetry monitoring network, called the SNOTEL network, that’s run by USDA Natural Resource Conservation Service. All the stations collect hourly data for air temperature, precipitation, snow depth, snow water equivalent, soil moisture and soil temperature.
We really use the daily data, but the hourly data has not been applied. And I felt like that was a great opportunity to analyze this data to shave away at some of the uncertainty and help inform the people who are managing our water in the Sierra Nevada.
This data is especially important for the warmer atmospheric rivers that move through and put rain up over the crest of the mountains. It’s a way for us to understand what’s really happening in the deeper snowpack and what percentage of the watershed is actually contributing to runoff. The benefit of the SNOTEL network is the soil moisture sensors. In the Sierra Nevada, those have been installed since 2006, so there’s quite a lengthy record of soil moisture data there. And when a rain-on-snow event occurs and the rainfall makes its way through the snowpack, there are these really prominent signals in the soil moisture data, so it’s a way to actually verify if the snowpack is releasing rainwater or snowmelt.
The soil moisture data is key for my research because I can identify when the snowpack is releasing water, and then look at the snow density, air temperature, and precipitation. That way I can identify the patterns that are present every time the soil moisture has these really dramatic responses to find the ingredients that produce more impactful runoff rain-on-snow events.
DRI: Is soil moisture a measure of melted snow, or is it rainfall that’s passing through the snowpack to the soil?
Heggli: That’s one of the things that is kind of unknown. There’s been an assumption that the snowpack is melting. But some of the research in my first paper shows that during these rain on snow events, snow melt is not the primary driver of runoff in deeper snowpacks. Shallow snow will be obliterated, but in the deep snowpack, sometimes that snow will actually absorb part of that rainfall. But essentially, except for very exceptional events — like the 1997 flood event and February 2017 in the Sierras — snow melt typically is not part of the runoff process in the deeper snowpacks. However, in the shallower snow at lower elevations, it can begin to melt and then that increases the amount of water available to runoff into the streams.
It’s really about trying to tease out whether the runoff during rain-on-snow events comes from melting snow, or is it just rainfall and increased runoff efficiency? What exactly is producing the runoff and why is it so hazardous? What are the ingredients of a perfect storm for those major rain-on-snow flood events?
Heggli’s snowpit at the Central Sierra Snow Lab during the December 2022 storm.
DRI: Why can rain-on-snow events be a problem?
Heggli: Well, it’s highly uncertain at times. There are times, like in 1997, where we knew that this very warm storm was coming in with a lot of moisture and precipitation and very high-elevation freezing levels. Sometimes when the atmospheric rivers make landfall, they’ll push against the Sierra Nevada and they’ll start to lift and at some elevation that rain is going to transition to snow. Understanding and forecasting the elevation that rain turns to snow is extremely difficult. And it can really change the amount of water that is being produced as runoff. In some storms, maybe 50% of the entire basin is contributing to runoff because of where the snow level is. But in other times, like in the 1997 event, you now have 100% of the basin actually contributing to runoff, and the more problematic floods have happened when we get a warmer atmospheric river just after a cold and low elevation snow event — just like something we just had — where there’s snow down to 2,000 or 3000 feet. When you take that shallow snow, and then you have rain come over it, it melts really quickly. Even if you only have three inches of snow at that lower elevation, the rain plus that three inches integrated over an entire area really increases the amount of runoff that’s available. My work is about trying to understand those vulnerabilities and when the situational awareness should be increased.
Another example was in 2017, when the Sierras had a rain-on-snow event in January that primed the snowpack and the soils, and then in February we had another atmospheric river rain-on-snow event, and that caused quite a bit of flooding. So, I’m trying to understand the evolution of how the first rain-on-snow event might impact the soils and the snowpack to kind of prime the system.
We can monitor these systems to understand if we have the capacity to take on some of that rain-on-snow, or if there are things like low elevation snow or prior rain-on-snow events that should really be alerting water managers. That way they can prepare by routing water to give it the most beneficial use up in the mountains or make sure they’re releasing some from reservoirs well ahead of the event so that there is the capacity to take on floods. In the worst-case scenarios, identifying the vulnerabilities early on can help inform emergency managers to decide if, or when, to start sending out sandbags and prepping for potentially failed levee systems well in advance of the impact.
Flooding in downtown Reno after a 1997 rain-on-snow event.
DRI: So, one thing that water managers can do, if they have enough warning that a rain-on-snow event might be imminent, is to release water from the reservoirs to make room for the flooding event?
Heggli: Yeah, a lot of that’s controlled by the Army Corps of Engineers, and there are strict rules for operating reservoir levels during flood season. But for hydropower companies that operate very complex networks up in the mountains, they can move water between their reservoirs. Depending on the capacity of one reservoir adjacent to another, they might be able to move water between them to keep it up in the mountains. That way, we have access to it in the summertime when it’s most needed. That’s why giving them information to prepare for storms can hopefully help us save water for the most beneficial use, so they don’t have to rely solely on releasing water downstream. Of course, that’s if there is the capacity in those reservoirs to actually take on a little bit more.
DRI: How common are rain-on-snow events in California and Nevada?
Heggli: They’re relatively common. One rain-on-snow event a year is pretty common, and we have years where we don’t get any. But we’ve also had years where we get as many as five rain-on-snow events. Everything in the West is highly variable but it’s definitely not uncommon and this is by no means something new – there are photos from 1955 of downtown Reno being flooded very similarly to 1997. So, it’s something that has always been a problem in this region.
What is new is that we are now confronting a changing climate where snow levels are rising, and it’s projected that more precipitation is going to be falling as rain than snow. This means we’re kind of approaching this period of peak rain-on-snow events while the atmosphere is warming, because more rain than snow is falling but we are still getting snow for the rain to fall on. So, it’s something that we very much need to be paying attention to and it’s going to continue to be — I don’t want to say a problem, it can cause problems — but it is definitely something that we need to make sure we’re adapting to and informing our emergency managers and water managers about so they can make the best decisions with our resources and infrastructure available.
Above: Two photos contrasting the Carson River’s flow before and after a December 2022 rain-on-snow event.
DRI: There’s been some chatter amongst meteorologists right now about the possibility for rain-on-snow events later this week (around March 10, 2023). What are your thoughts about the likelihood of this event right now and where do you see it having an impact and at what scale?
Heggli: We have seen signals for a potential warm atmospheric river (AR) and over the last couple of days the models have been converging in agreement that a lower magnitude AR is approaching. The exact location of landfall and the freezing level in the atmosphere is still uncertain at this point. However, even a weak yet warm atmospheric river, combined with all the low elevation snow, could still be very impactful. The low elevation snow, high soil moisture content, and higher river levels, which we currently have, tick the ingredients boxes for increased potential impacts from a warmer atmospheric river. It’s something to keep an eye on, but the predictions don’t yet show something huge like 1997 — there is something coming but it’s still quite uncertain how it will evolve.
DRI: Is there anything else you think is important?
Heggli: I think it’s important to communicate that the snowpack isn’t a sponge — I think there’s a really common misconception that, “Oh, rainwater moves in this uniform wetting front and just slowly makes its way down.” That’s not at all what happens during rain-on-snow events, especially higher intensity ones. The rain will hit the surface and then it looks for the path of least resistance. It uses capillary attraction to find ways to work through the snowpack, and it’ll form what they call flow fingers, or preferential flow paths. It’s like the way that you see icicles line up, the water drips in specific places. It’s something similar to that where water will find the path of least resistance and warm the snow just enough there to make its way through, which makes it easier for all the other rainwater to follow. So, it doesn’t actually need to warm the snowpack evenly to be able to progress. It’ll find these little paths, and it just basically punches its way through the snowpack.
Part of the concern with rain-on-snow events is that we have higher runoff efficiencies because the rain can punch through the snowpack and make its way to the soil and then run off. And if there’s so much rain that’s coming through that the soils can’t take it on, then that rainwater actually starts to move through the base of the snowpack. I posted a photo from December 30 when I was up at the Central Sierra snow lab during the rain-on-snow event, digging a snow pit in the rain. When I got there, there was nine centimeters of standing water at the base of the snowpack. By the time I left there was 13 centimeters of standing water at the base. So, it just really shows that the water is not able to move through the soil anymore and enter the streams that way — it’s now making its way over the surface. And that is something that can really cause a lot of flooding, because it just moves so much quicker.
Unfortunately, a lot of the work on this seems to have been forgotten and isn’t well integrated into our forecasting models. A lot of the existing models cannot handle preferential flow paths or lateral flow through the snowpack. I think this is because people aren’t out in the field making observations as much anymore, they’re relying heavily on computer simulations. These are helpful, but they also tend to remove outlier events, and in the Sierra Nevada those outliers are the events that impact us the most. You know, none of the work that I do matters until it actually matters, and then it matters a lot. We can have years where what I do is of no use to anybody. But years like this is when we really need additional information because there’s nowhere else to get information — we can’t get satellite data because of cloud cover. So, all that we have to understand what’s going on in the mountains are observational networks. That’s part of the reason that I thought, “we’ve got to use this data.”
Heggli’s experiment using instant coffee to track the flow of water through the snowpack.
DRI: So, you’re going out in these rain-on-snow events and digging down to the bottom of the snowpack to see what’s happening?
Heggli: Yeah. You can see from the snow surface the development of the preferential flow paths. To try to better understand these flow paths, sometimes I take instant coffee and put it in a spray bottle and spray the snowpack, and then go and dig it out. I can do different quantities of spray and then let it sit overnight and see how far those preferential flow paths progress — that way I can see the contrast of the coffee against the snow. I do that to try to better understand and observe and document what is really happening with the rain-on-snow and hope that some of these visuals help get the idea across that snow isn’t a sponge, and this is why rain on snow events are so difficult, but also interesting.
For more information on Anne and her research, watch this video from her presentation at DRI’s public science seminar series, Science Distilled.
Feb 21, 2023 | Announcements, News releases
Arsenic Contaminates Private Drinking Water Wells Across the Western Great Basin
February 21, 2023
RENO, Nevada
Arsenic
Water Wells
Western Great Basin
Above: Researchers test a private well water for traces as metals such as arsenic in Washoe Valley, Nevada.
Credit: Monica Arienzo/DRI.
A New Study Maps Risk of Elevated Arsenic Levels in Groundwater Wells Across Northern Nevada, Northeastern California, and Western Utah
In the arid and drought-stricken western Great Basin, sparse surface water means rural communities often rely on private groundwater wells. Unlike municipal water systems, well water quality in private wells is unregulated, and a new study shows that more than 49 thousand well users across the region may be at risk of exposure to unhealthy levels of arsenic in drinking water.
Led by researchers at DRI and the University of Hawai’i Cancer Center and published February 16th in Environmental Science and Technology, the study used data from groundwater wells across the western Great Basin to build a model to predict the probability of elevated arsenic in groundwater, and the location and number of private well users at risk. According to the study, the Carson Desert basin (including the town of Fallon, Nevada), Carson Valley (Minden and Gardnerville, Nevada), and the Truckee Meadows (Reno), have the highest population of well users at risk. The new study builds on previous research showing that 22% of 174 domestic wells sampled in Northern Nevada had arsenic levels exceeding the EPA guideline.
“What we are finding is that in our region, we have a high probability for elevated arsenic compared to most other regions in the country,” said Daniel Saftner, M.S., a hydrogeologist at DRI and lead author of the study. “And we are seeing that geothermal and tectonic processes that are characteristic of the Great Basin contribute to the high concentrations of naturally occurring arsenic in the region’s groundwater.”
The region’s mountains are also primary sources of arsenic. “As the arsenic-rich volcanic and meta-sedimentary rocks that form the mountains erode, sediment is transported to the valleys below,” says Steve Bacon, Ph.D., DRI geologist and study co-author. Water percolating through the valley floor then carries arsenic into the groundwater. Deeper, older groundwater and geothermal waters tend to have a higher arsenic concentration and can migrate upward along faults and mix with shallow groundwater.
“We really wanted to better understand the unique geologic factors that contribute to high arsenic in this study,” Saftner says. “It’s important for us to think about the role of the environment as it pertains to human health – where we live can influence what our long-term health looks like.”
To train and test the predictive model, the research team used data collected through the Healthy Nevada Project, including water samples from 163 domestic wells primarily located near Reno, Carson City, and Fallon. These data were supplemented with 749 groundwater samples compiled from the USGS National Water Information System. The model uses tectonic, geothermal, geologic, and hydrologic variables to predict the probability of elevated arsenic levels across the region.
Although the U.S. EPA has set an arsenic concentration guideline of 10 µg/L for public drinking water, previous research has shown a range of health effects from long-term exposure to levels above 5 µg/L. Using this concentration as the benchmark, the model and map show that much of the region’s groundwater – particularly in western and central Nevada – is predicted to have more than a 50% probability of elevated arsenic levels.
“Community members can use our arsenic hazard map to see what the risk is at their location, which might motivate them to test their well water,” says Monica Arienzo, Ph.D., associate research professor at DRI and study co-author. “Then, if they have high levels of arsenic or other contaminants, they can take steps to reduce their exposure, such as installing a water treatment system.”
The findings from this study are potentially useful for a range of different applications. “The results can be useful for water utilities or water managers who tap similar shallow aquifers for their water supply,” says Saftner, “as well as irrigation wells that source water from these aquifers.”
The research team plans to use their model to take a closer look at the health impacts of prolonged arsenic exposure. “Through the Healthy Nevada Project, genetic data and health records are paired with environmental data to help determine whether there are associations between the levels of arsenic in a community’s groundwater and specific health outcomes,” stated Joe Grzymski, Ph.D., research professor at DRI and principal investigator of the project.
Map showing the hydrographic basin boundaries and predicted average population density with arsenic ≥5 μg/L in (a) the entire western Great Basin; (b) Truckee Meadows (Reno area), Lemmon Valley, and Cold Spring Valley; (c) Carson Valley (Minden and Gardnerville areas); and (d) Carson Desert (Fallon area).
Predicted probability of arsenic ≥5 μg/L in alluvial aquifers of the western Great Basin, including (a) mean probability of arsenic ≥5 μg/L, (b) 95% confidence upper bound, and (c) 95% confidence lower bound. Bedrock aquifers and lakes are shown in gray and were not included in the arsenic hazard assessment.
More information:
The full study, “Predictions of Arsenic in Domestic Well Water Sourced from Alluvial Aquifers of the Western Great Basin, USA,” is available from Environmental Science and Technology: https://doi.org/10.1021/acs.est.2c07948
Study authors include: DRI researchers Daniel Saftner, Steve Bacon, Monica Arienzo, Erika Robtoy, Karen Schlauch, Iva Neveux, and Joseph Grzymski, as well as Michele Carbone with the University of Hawaii Cancer Center.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About the University of Hawaiʻi Cancer Center
The University of Hawaiʻi Cancer Center through its various activities, including scientific research and clinical trials, adds more than $57 million to the Oʻahu economy. It is one of only 71 research institutions designated by the National Cancer Institute. An organized research unit within the University of Hawaiʻi at Mānoa, the UH Cancer Center is dedicated to eliminating cancer through research, education, patient care and community outreach with an emphasis on the unique ethnic, cultural, and environmental characteristics of Hawaiʻi and the Pacific. Learn more at https://www.uhcancercenter.org. Like us on Facebook at https://www.facebook.com/UHCancerCenter. Follow us on Twitter @UHCancerCenter.
Feb 15, 2023 | Blog, Featured researchers
Mary Cablk: Celebrating a Career in Canine Detection, Biology, and Remote Sensing
February 15, 2023
RENO, NEV.
Mary Cablk
Remote Sensing
Canine Search and Rescue
Above: Dr. Mary Cablk standing on the side of a snowy mountain.
Mary Cablk, Ph.D., recently retired from DRI after 23 years. Her journey into science began with remote sensing, and she later pioneered new fields of scientific research by integrating her experience as a canine search and rescue handler and trainer. In addition to her role as an Associate Research Professor in DEES, she served as Graduate and Adjunct Faculty at the University of Nevada, Reno, where she was instrumental to the creation of a Ph.D. program in forensic anthropology.
Among her many career accomplishments, she was the first to use detection dogs to track and locate threatened desert tortoises, as well as the first to establish that dogs can locate human teeth for recovery and identification purposes. She serves on the American Academy of Forensic Sciences Consensus Body and Standards Board, is a court recognized expert on the science of detection dogs, and is an auxiliary deputy with several County Sheriff’s offices in Nevada.
Cablk shared some of her career highlights, her plans for a busy retirement, and her perspective on how the scientific landscape has changed over the years.
Cablk, who recently retired from DRI after 23 years.
DRI: What first brought you to DRI?
Cablk: I met a now retired faculty member, Dr. David Moat, while doing my Ph.D. at Oregon State. He was on loan from DRI and was stationed at the EPA lab in Corvallis, Oregon, at the National Health and Environmental Effects Research Laboratory. He invited me to work on a D.O.D funded project in the California Mojave Desert, so I competed for, and was awarded, a National Research Council Postdoctoral Fellow position, two years in a row. When Moat returned to DRI in Reno during the project I followed to finish out that postdoc, and that’s how I ended up here.
DRI: How did your interest in scientific research begin?
Cablk: I was exposed to satellite imagery and image processing when I was in graduate school at Duke University. I took a course in remote sensing – this was back when times were very different than they are now. We didn’t have smartphones, and we certainly didn’t have imagery on anything handheld. I thought satellite imagery was beautiful.
Art is in my genes — my grandmother was a biological illustrator. If I didn’t go into science, I was going to go into art. I thought the imagery of earth was beautiful, and then it turned out to also be data, so I got sucked into it. Everything about it appealed to me – what you could see from afar – there’s a lot of art in science, if you know how to look for it.
DRI: How did you transition into doing a lot of work with dogs?
Cablk: That started early in my career, around 2001. Right around the time when I was finishing my postdoc here, and I was a new faculty member. A Government Accounting Office report came out examining how much money had been spent on desert tortoise research, which was a lot, and what they had received in return for all that money. It wasn’t much – we weren’t getting any closer to delisting the species or reversing the downward trend.
At that time, I had started doing search and rescue myself with my own dog. I started to see what dogs could do searching for missing people, and I thought, “Wow, this is incredible. I wonder if dogs can find tortoises.” That was really the launchpad for what became a career studying canine detection. It didn’t come easy – I was told initially by a lot of people, “that’s the dumbest thing I’ve ever heard.” Now, of course, wildlife conservation detection is huge. But back then I was one of the first to pioneer interfacing dogs with actual animals, and not just scat. We had some success, and then things snowballed and progressed. Before I knew it, I was 10 years in and a few million dollars into the research.
I would draw from the search and rescue community to hire dogs and handlers for my Desert Tortoise K9 program, because at that time there weren’t many professional handlers like there are now. Conservation canine work is commonplace now, but back then, we were pioneering everything. It was fun – a lot of time spent in the desert, and I spent months and months living outside of military installations. That was a big part of my career.
A tortoise detection dog-in-training performs his trained alert, the ‘sit,’ near a tortoise.
Credit: Photo from Cablk et al., 2008, “Olfaction-based Detection Distance: A Quantitative Analysis of How Far Away Dogs Recognize Tortoise Odor and Follow It to Source.”
DRI: I’d love to hear more about your search and rescue work and how you got started with that.
Cablk: I got into it very early on when I was a postdoc. I had someone close to me who needed rescue in Zion National Park, and search and rescue in Zion saved his life. There is some percentage of people who get into Search and Rescue because they have a first-hand experience, or someone close to them needs rescue or recovery. I’m one of them, and it just dovetailed with my wanting to work with dogs. I’d always had dogs, my degree was in biology, and I have a lot of background in animal behavior. I was never a laboratory person.
Search and rescue really opened my eyes to possibilities for research because back then this was all new. Nowadays, we’re in a super exciting time with research into canines, canine behavior and cognition. But back then, it was literally a desert of knowledge and science. So, I just integrated what I was learning from my research into how I was training dogs in search and rescue, and then taking things that we saw on deployments and in training, and turning that around and asking questions to see if we could address those scientifically. So, I’m a little bit unusual – maybe not unusual for DRI, but certainly for a lot of people’s careers – where there’s this integration between what I do professionally and what I do in my free time. It’s been a really fun way to have a career, looking back on it.
DRI: You’re very involved in the local search and rescue groups, right?
Cablk: Yes, very much. When you run dogs for search and rescue, you either do it for a little bit, and then you get out of it quickly, or you’re in it for life – I fall into the latter category.
I’m an auxiliary deputy with the sheriff’s office here in Washoe County, the Carson City Sheriff’s Office, Douglas County Sheriff’s Office, Lyon County Sheriff’s Office, and the Humboldt County Sheriff’s Office. Over in the state of California I’m integrated with their Office of Emergency Services with the Governor’s office there.
Search and Rescue requires a huge amount of time – very few people have the time and the means to be able to do it. I feel very fortunate that I had the wherewithal and the ability to land here at DRI where I could pursue whatever research interests I wanted as long as I could secure funding. We have complete flexibility to be able to integrate something like search and rescue with science. It’s really unique here.
Cablk with her dog, Dax, at a search and rescue training course.
DRI: Can you talk about some of your research projects?
Cablk: Well, after I learned about how difficult it was for forensic anthropologists to find teeth (which is important for body identification) I thought “You know, if dogs can find desert tortoises the size of a half dollar in hundreds of acres of desert, I bet they could find teeth.” And I saw a call for proposals that I think the Department of Justice had put out to develop more sophisticated methods to locate teeth. So, I called the program manager to get a little more information and said, “Hey, here’s my idea. I think we should look at running dogs to find teeth.” He said that was the most ridiculous idea he had ever heard. So, I hung up the phone and said to myself, “That’s fine. I’ll find another source of funding and publish the results anyway.” And that’s exactly what I did.
I published the study in the Journal of Forensic Sciences. And I was told that one year the findings were included in the American Academy of Forensic Sciences diplomate exam, which is a big deal. It was groundbreaking research at the time.
DRI: How have things changed since you first started your career?
Cablk: They have changed so much. Probably the biggest part is the development of technology. When I first started working with satellite imagery, we didn’t have the spatial resolution that we have now. I was computer line coding to do my analysis, and now people do analyses on their phones. Cellphone technology had just become smaller than a handheld brick when I finished my PhD in 1997. When we would go out in the field, we didn’t have communications with anybody. And you know, you just did what you had to do to get your research done. We were very creative. And it was fun – it was really fun.
I think for my generation of field scientists who would go out, we would dive in headfirst and get our hands dirty – that’s the fun part. Now, there’s a lot more oversight. And then of course, now we’re in constant communication.
But we also didn’t have the education-communication side of it, to tell the world about what we were doing. That wasn’t really a thing, for lack of a better term. We would communicate within our own discipline, peer to peer and colleague to colleague, but it was difficult to explain to the public what we were doing. I have a million stories about the personal interest side of science and fieldwork, but in my generation, we were never taught how to share those stories. It was not something that was appreciated. I’m proud of the work that I did, and I’d love to share the human side of it. Like the first time the dogs found tortoise hatchlings, which are the size of silver dollars. That ability wasn’t on our radar screen, and we just sat there and watched it happen. It was like watching Neil Armstrong step on the moon – we had no idea that what the dogs were doing was even possible. I wish that we’d had an opportunity and the means to communicate that pivotal finding. Now, I see that shift in DRI and in the scientific community as a whole, towards communicating our science to the public, but back then, it was a whole different environment.
DRI: How has working at DRI impacted your scientific research and network?
Cablk: Well, I think it’s the other way around. I mean, we’re the ones that are doing the research. And we can do it anywhere. I don’t see that DRI has necessarily impacted my work, but I think that DRI has created a tremendous opportunity, and the right framework to allow professional development and growth.
DRI: What advice do you have for young scientists?
Cablk: The world is so different now. Nowadays, we don’t have the hard lines between disciplines that we did before. I see the world now as an endless sea of opportunity. The one piece of advice that I’ve always given, is when you’re dealing with data analysis software, you need to learn the math behind it, and not just which buttons to push.
Go for it, have fun with it. Life at DRI is incredibly stressful. Now, on the other side looking back, I can’t imagine doing anything else. But it’s a double-edged sword. You have to have the stomach for it, especially as a woman. I do believe that challenges still exist for women, even though we’re in a different society than we were even a decade ago. I don’t know that there’s anything anybody can do externally to help women scientists find their voice and their confidence. I wish I could, because I wish I’d had a mentor like that when I was first starting out. When I showed up here, it was a sink or swim environment. But if you have the brains, and you have the passion, and the drive, and the dedication and motivation – young scientists can do anything nowadays. And they should.
DRI: What are your plans for retirement?
Cablk: Oh, I love retirement! I’m still working. Every day is different and interesting. I am in a teaching role for the state of California Governor’s Office of Emergency Services. I teach search and rescue, having almost 25 years of experience and training under my belt. We do week-long courses for what’s called “Winter Search Management.” We go down to Mammoth Lakes or Mount Shasta or Sequoia Kings Canyon, and teach law enforcement everything about winter searching: avalanche conditions, medical, equipment, you name it. We spend five days and at the end, they end up sleeping in a snow cave that they dug themselves.
I’m also working with Chico State forensic anthropologists and the state of California Office of Emergency Services to develop the canine portion of a new class called “search methods and identification in a burned environment.” So, when we have these massive, fatal fires that are tragic and have become an annual occurrence, we use the dogs to help locate missing people.
And of course, I’m still deploying dogs. I have the freedom and flexibility to deploy on searches and I’m still very active with the American Academy of Forensic Sciences. I still sit on their standards board and we’re working on developing national level standards. I am often invited to speak at professional conferences and meetings, for example I’ll be talking about water recovery canines with the International Water Rescue Professionals Association, MENSA, things like that. I’m still active and engaged with the canine community, and there’s certainly a scientific aspect to my involvement. Someday maybe I’ll end up on a beach, like some of my colleagues who are also retired, but I’m still pretty young and have more professional interests to pursue.
Cablk doing recovery work with her dog, Dax, at a burn site in California.
DRI: Will you continue doing some work at DRI?
Cablk: I’ll seek emeritus status, and then become an hourly to be able to take advantage of opportunities that might come through DRI. We have phenomenal scientists here. And I really loved working at DRI. I’m not saying it wasn’t stressful, and I’m not saying it wasn’t hard — but what a great career.
Feb 6, 2023 | Blog, Featured researchers
DRI Interns Join the Search for Elusive Desert Tortoises in Tule Springs Fossil Beds National Monument
Feb. 6, 2023
LAS VEGAS, NEV.
Desert Tortoise
Occupancy Sampling
Tule Springs
Above: Tiffany Pereira, M.S. conducts field research at Tule Springs Fossil Beds National Monument outside of Las Vegas.
DRI’s Behind the Science Blog continues with the second installment of our fall 2022 Research Immersion Internship Series
This fall, DRI brought eleven students from Nevada’s community and state colleges to the Las Vegas and Reno campuses for a paid, immersive research experience. Over the course of the 16-week program, students worked under the mentorship of DRI faculty members to learn about the process of using scientific research to solve real-world problems.
Our Behind the Science Blog is highlighting each research team’s accomplishments over a series of five stories. Click here to read the first installment in our internship series.
In this story, we follow Tiffany Pereira’s student interns as they track elusive and threatened desert tortoises in the Las Vegas desert.
A desert tortoise in Mojave National Preserve.
Credit: Photo courtesy of the U.S. National Park Service.
Student Researchers: Amelia Porter and Akosua Fosu
Faculty Mentor: Tiffany Pereira, M.S., Ecologist and Assistant Research Scientist
Despite their enormous size, desert tortoises are elusive desert dwellers, often spending most of their lives in underground burrows – giving them their scientific name, Gopherus agassizii. They occur across the Mojave and Sonoran deserts of California, Nevada, Utah, and Arizona. Listed as threatened under the Federal Endangered Species Act since 1990, their numbers are declining due to a number of threats. Understanding the size and health of their populations is a priority for both government agencies and researchers.
Desert tortoises occur across the Mojave and Sonoran deserts of California, Nevada, Utah, and Arizona.
Credit: Map courtesy of the U.S. National Park Service.
“Desert tortoises face predation by ravens and other large birds, canids including coyotes and foxes, as well as insects such as fire ants,” said intern Amelia Porter. “They’re also victims of urbanization, military activity, mining, and alternative energy projects, which destroy their natural habitat as well as their food and water sources and deposit a multitude of pollutants.”
For their internship, Amelia Porter and Akosua Fosu worked with DRI ecologist Tiffany Pereira to survey parts of the Tule Springs Fossil Beds National Monument near Las Vegas for desert tortoises. Tule Springs was established in 2014 to protect the delicate desert habitat as well as rare, preserved fossils of Ice Age life – including mammoths, ground sloths, dire wolves, and American lions. The park borders northern Las Vegas and Highway 95.
“When it comes to urban-wildlife interface, Tule Springs acts as a barrier between active human development and pristine desert tortoise habitat,” said intern Akosua Fosu. “The thing is, Tule Springs National Monument is literally in people’s backyards, and it borders a major highway. The goal is to continue to use this park and enjoy all it has to offer, but to do so in a way that doesn’t disturb the desert tortoises within the monument.”
Interns Akosua Fosu and Amelia Porter locate a desert tortoise while conducting surveys.
Searching the Desert Landscape for Clues
To help Tule Springs resource managers better understand how many desert tortoises occur across the park, as well as how they use the landscape, the research team used a method called occupancy sampling. This method combines field surveys with computer modeling to help researchers determine the proportion of habitat within an area containing evidence of a targeted species. Occupancy sampling allows scientists to determine the abundance of a species that is otherwise elusive or difficult to track.
“One way to understand where tortoises are in the park is to walk transects across the entire monument – but that’s just not feasible,” said faculty mentor Tiffany Pereira. “So, we did a different type of population sampling that could provide information on where the tortoises are. Going to the site with the interns every week has been really fun.”
The research team conducted field surveys across 20 plots, each of which they visited four times. As they walked focused lines called transects, they recorded signs of tortoise occupancy including scat, tracks, and of course, observations of live tortoises.
Intern Akosua Fosu surveys the desert landscape for signs of desert tortoise, including scat, tracks, and evidence of burrows.
“Tortoise scat is cylindrical in shape and has lightened edges,” said Fosu. “It’s almost like a cigar – and when you break it apart, it contains plant material.”
When the researchers found a possible tortoise burrow, they looked for evidence of recent activity, like an “apron” in the dirt indicating digging, or visible tracks.
“A tortoise burrow is a half-circle shape with the top of it rounded and smooth, due to the shell eroding it over time,” Porter said. “They’re usually located in rocky areas or under vegetation.”
Desert tortoises spend much of their lives in burrows that protect them from the harsh desert sun.
Credit: Tiffany Pereira/DRI.
The students recorded any sign of desert tortoises in a survey app, including the measurements and characteristics of burrows and the presence of live tortoises or carcasses. Using the survey data, the researchers marked each plot as active or inactive for desert tortoises using a binary system. The results are analyzed using the software program PRESENCE, which provides an estimated occupancy probability of desert tortoises within an area of interest.
“Tule Springs is a newer park,” said Porter, “so they will use the data that we’ve collected over the course of the season to help determine where to place signage, or hiking trails, without disturbing desert tortoise habitat.”
One of the most important findings from their study is that many tortoises are using parts of the park that are near human activity. “That’s a big deal for management of the park,” Pereira said. “In one case, we found a tortoise less than 200 meters from a paved road. When they think about their management plans, they need to account for that.”
Joshua trees at Tule Springs Fossil Beds National Monument.
Embracing the Research Experience
For student interns Porter and Fosu, joining Pereira’s research team and spending time in the field was a truly immersive experience into the world of science.
“Being able to see some of our native flora and fauna up close was a highlight,” said Fosu. “There were days where we came across tortoises, snakes, and even jack rabbits. I also got to learn about some of our native plant species.”
Fosu, a student at Nevada State College studying biology and chemistry, entered the school year with plans to pursue a veterinary career. Her time working with Pereira reinforced her interest in working with animals, she says. “I may even consider conducting veterinary research in the future.”
Student intern Akosua Fosu finds a desert tortoise while conducting surveys.
“Overall, I think this was a very eye-opening experience,” Fosu continued. “My goal was to gain some research experience before I graduate and I’m glad I was able to gain that through this internship. I would definitely recommend this to anyone considering a career in a STEM field.”
Intern Amelia Porter conducting a survey for desert tortoises in Tule Springs Fossil Beds National Monument.
Porter, a student at the College of Southern Nevada studying environmental conservation biology, agreed that the DRI internship helped her feel more confident in her career choice. “It has not only confirmed my passion for a career in ecology and wildlife studies,” she said, “but sparked an interest in park service and in field surveying as well.”
The highlight of the semester, Porter said, was “feeling immersed in the methods of an established ecologist, and the opportunity to feel like I was a part of a project that benefitted the surrounding area.”
“I think the entire immersion program has been a fantastic opportunity,” she said, “and I hope that the program continues so it can be as inspiring to others as it has been to me.”
Jan 25, 2023 | Blog, Featured researchers
Lynn Fenstermaker: Celebrating a Career in Ecological Remote Sensing and NASA Space Grant Leadership
January 25, 2023
LAS VEGAS, NEV.
Lynn Fenstermaker
Remote Sensing
NASA Space Grant
Above: Always looking for NASA Mission relevant images, Lynn Fenstermaker took this photograph of the Neowise Comet with the Big Dipper above along the Lee Canyon Road in the Spring Mountains on July 18, 2020.
Credit: Lynn Fenstermaker/DRI.
Lynn Fenstermaker, Ph.D., recently retired from DRI after 32 years. Throughout her career as an ecologist and remote sensing scientist, she tackled large-scale questions about environmental stressors, including the impacts of climate change and wildfires on Great Basin and Mojave Desert ecosystems.
Her long list of career achievements includes serving as Director of the Nevada Space Grant Consortium and Nevada NASA EPSCoR, as well as two statewide research programs examining the effects of climate change: the Nevada Desert FACE Facility (NDFF) and the Mojave Global Change Facility (MGCF). She also acted as Director of the Nevada Climate-ecohydrological Assessment Network (NevCAN). Fenstermaker served on three national boards (National Space Grant Foundation, National Space Grant Council Executive Committee, and NASA EPSCoR Caucus) and a state board that governs the Nevada Institute for Autonomous Systems. At DRI, she served as Deputy Director of the Division of Earth and Ecosystem Sciences.
Fenstermaker – who was recently admitted to her high school’s hall of fame – shared some of the biggest projects of her career, plans for retirement, and the advice she would give to young scientists following in her footsteps.
Fenstermaker (with Eric Knight, UNLV) collecting multi-spectral images with UAS.
Credit: Lynn Fenstermaker/DRI.
DRI: What first brought you to DRI?
Fenstermaker: When I first came to Las Vegas, I had just wrapped up all but the writing for my master’s degree in agronomy at the Pennsylvania State University. I took a job with the EPA’s Remote Sensing Lab, where I got involved in a lot of projects all across the country, from Montana down through Nevada. (Note: Fenstermaker worked on the EPA’s first ever GIS project, which modeled groundwater contaminant plumes to identify the sources of contamination. This project helped demonstrate how GIS could produce useful information for the EPA).
After I finished my master’s in 1986, I moved to Las Vegas to take a job at Lockheed, where I worked for a little over two years. While I was there, I got to know the director of the Environmental Research Center at UNLV and worked there for three years. When I decided to leave, I created my position at DRI, which was initiating a cooperative agreement with the EPA lab here in Las Vegas. So, I said “Hey, I would like to do this work, but I’d like to do it in collaboration with the other remote sensing scientists at DRI.” The EPA said yes, so I sort of created my own position.
I’ve been at DRI ever since, and that’s been 32 years. Which doesn’t seem possible because I’m still young on the inside.
Fenstermaker’s nearly all-female PSU team competing at the National Soil Judging Contest in Nebraska. Fenstermaker is second from the right.
Credit: Lynn Fenstermaker/DRI.
DRI: What encouraged you to stay at DRI for so many years?
Fenstermaker: I like the flexibility of being able to take on different projects. Everyone who’s been at DRI for some length of time knows that funding can be challenging – there were times when I scrambled for funding, particularly when we lost the cooperative agreement with the EPA lab. It was at that time that I decided to go for my Ph.D., so I was working full time in a soft money environment, keeping myself fully funded, taking classes, and working on a dissertation – It took me 11 years to finish my Ph.D.
After my Ph.D. I thought about going to a university to teach and do research while having a hardwired salary. But then I talked with faculty about all the university stressors, and I thought, “Well, at DRI there’s only one big stressor – and that’s keeping yourself funded.” So, I networked a lot, and I think having a collaborative spirit really helped me to get involved in various projects, as well as my organizational skills.
DRI: Tell me about the NevCAN project.
Fenstermaker: NevCAN’s goals were to develop standardized infrastructure with real time data collection to measure and analyze the effects of climate variability and change on ecosystems and disturbance regimes. We also wanted to better quantify and model changes in water balance and supply under climate change.
Essentially, it’s a series of meteorological stations with common sensors across two mountain ranges in Nevada. The stations are centered within each ecosystem type. And we’re looking at weather variability and climate at different elevations.
We measure incoming solar radiation (long and shortwave), and incoming precipitation, as well as factors that affect that including wind speed, wind direction, and air temperature at different heights. We also measure soil moisture and soil temperature, and within vegetation, we measure the fate of the water: how much is transpired from trees or evaporated from the soil surface, how much went into deep leaching and potentially could enter the groundwater at some point in time.
Unfortunately, when you’re looking at climate variability and change, you can’t just measure for five years and say, voila – no, it’s long-term monitoring. And a lot of the federal agencies don’t want to pay for long term monitoring.
NevCAN transect locations in Nevada’s Snake Range.
Credit: Lynn Fenstermaker/DRI.
DRI: Can you describe some of your other large projects, the Desert FACE Facility, and the Mojave Global Change Facility?
Fenstermaker: The Desert FACE facility fumigated an intact ecosystem with elevated CO2 to determine plant and ecosystem response to the increased CO2. We published a Nature paper in 2014 that was pretty much a summary of the project data. What was interesting about this is that overall, we saw retention of carbon in the soil, not in the plant matter.
The Mojave Global Change Facility looked at what would happen with soil disturbance, nitrogen deposition and increased summer monsoon precipitation. Because earlier climate models predicted an increase in summer rain in the Mojave Desert due to global warming, we simulated increased summer precipitation. The models have since changed, and both the models and weather data clearly show that this isn’t the case. Monsoon flow is not bringing more summer precipitation into the Mojave Desert.
We’re maintaining both sites for future research, because they’re really unique, one-of-a-kind research sites in the world.
Fenstermaker hand-digging holes for rain gauges at the Mojave Global Change Facility.
Credit: Lynn Fenstermaker/DRI.
DRI: Tell me more about your work as the Director of Nevada NASA EPSCoR.
Fenstermaker: EPSCoR is the Established Program to Stimulate Competitive Research. It’s a program funded by Congress for states who receive less than 0.75% of all NSF research dollars, or less than 10% of all federal research dollars.
The history of this program is interesting. During World War II, there was a lot of buildup along the coasts of the United States. And a lot of industry was concentrating in these regions, and as universities started partnering with industry to build their programs, they got a lot of research dollars. Additionally, most of the NASA centers are located along the coast. There are only a few that are quasi- interior, like Glenn Research Center in Ohio, but the rest are in Virginia, Texas, California, and Louisiana. This is why the interior states largely got left behind. EPSCoR is a way of spreading out the funding to the interior states who do not have those industry collaborations or that rich history of developing unique research infrastructure capabilities. The states that primarily benefit are Nevada, New Mexico, Wyoming, Idaho, Missouri, Mississippi, South Carolina, Alaska, Montana, Nebraska, North and South Dakota, Vermont, and New Hampshire. The Nevada Desert FACE facility was a DOE EPSCoR project.
Fenstermaker served as the Director of Nevada NASA EPSCoR and the Nevada Space Grant Consortium.
Credit: Lynn Fenstermaker/DRI.
DRI: You also served as Director of the Nevada Space Grant Consortium. Can you talk a little about that?
Fenstermaker: NASA requires that in EPSCoR states, whoever is the Space Grant director also serves as that state’s NASA EPSCoR director. Space Grant is all about improving STEM education, so we run solicitations and review panels to make sub awards to Nevada faculty and students. Some of the most important solicitations we do are undergraduate research scholarships, graduate student fellowships, and student internships at NASA centers.
I convene a faculty review panel of at least three members, each one from a different Nevada System of Higher Education institution, to review all of the applications, then convene the panel and make the selection for who receives funding. I do the same for faculty awards. On the Space Grant side, we fund faculty to improve higher education or pre-college education. For both of those we have a hands-on training component for either college students or pre-college students. One of the successful programs has been a program where a UNR faculty member mentors at an engineering high school in Reno, and they build a human-powered rover to take to Huntsville, Alabama, to participate in national competitions. And every time they’ve gone, they’ve won one or more awards.
On the pre-college side, in addition to the hands-on training for students, we also fund teacher training. The DRI Science Alive team has been quite successful at applying for these funds.
So, I oversee all of that, and go to the national meetings: I’ve served on the National Space Grant Council Executive Committee, which is the group of directors from across the country that connects the Space Grant program to NASA’s Office of STEM Engagement. I’m handing over the role of Secretary of that Committee to Eric Wilcox, the incoming NV Space Grant and NV NASA EPSCoR Director.
DRI: What are your plans for retirement?
Fenstermaker: I’m going to exercise more, and I’ll continue to work part time. I’m going to try to wrap up things with NevCAN and with the Desert FACE and Mojave Global Change Facilities so they can remain intact and be passed forward.
I also started watercolor painting a couple of years ago, which is fun. And I’ll keep hiking and bicycling. Basically, I’ll be figuring out this transition as it happens.
DRI: What advice do you have for young researchers or young climate change scientists?
Fenstermaker: Not to have too high of expectations — I always compared myself with people that were putting out 200+ publications over the course of their career, and that’s just not who I am. It’s important to learn who you are and accept yourself, recognize your strengths, as well as where to challenge yourself — and to network. Communication is critical.
Don’t strive for perfection, or you’ll really disappoint yourself or fall behind. Just strive to meet your obligations and do it reasonably well. Also, you’ve got to schedule personal time, as well as work time. For example, if you’re going to a conference in a cool area, schedule a couple of days before or after and do a little sightseeing, take a significant other with you and make time for family and yourself so that you don’t burn out.
A young Lynn Fenstermaker presented 4-H projects on soil conservation, geology, fossils, and insects.
Credit: Lynn Fenstermaker/DRI.
DRI: Is there anything else you think is important?
Fenstermaker: A few more words of wisdom: Watch for windows of opportunity, because a lot of things I got involved in came from communicating with people who opened a window of opportunity for me, and I said yes.
Overall, DRI has been a great place to work, particularly at the Southern Nevada Sciences Center. It feels like family. It’s a great organization because you have the flexibility to go in a lot of different directions with your research, and work collaboratively across disciplines and across institutions, which is really rewarding.
Jan 17, 2023 | Blog, Featured researchers
Estom Yumeka Maidu Student Teaches DIY Air Filtration Techniques to Help Reservation Communities During Wildfire Season
January 17, 2023
RENO, NEV.
By Robin Smuda, Climate Reporter Intern
Air Filtration
Reservation Communities
Wildfire Season
Wildfires affect all in their way, from the places burned as fuel to the areas filled with smoke. Across the western U.S., climate change is leading to warmer, drier conditions and contributing to longer, more active fire seasons. In the Great Basin and other parts of the western U.S., indoor air filtration during wildfire season has become a problem. Many houses have no particulate filtration systems, and this is especially true on reservations. Possible solutions can be expensive and materials can be hard to obtain, but Piercen Nguyen and his colleagues Meghan Collins and Jade Nguyen of DRI have a proven solution.
HEALTH IMPACTS OF WILDFIRE SMOKE
Piercen Nguyen, DRI workshop intern and member of Enterprise Rancheria, Estom Yumeka Maidu Tribe, is a student at the University of Nevada, Reno, and became interested in the health impacts of wildfire smoke while working on a project for the Center for Genomic Medicine at DRI in Reno, Nev. Studying lung cell damage from prolonged episodes of wildfire smoke, he saw the physical effects of smoke on lung tissue.
According to Nguyen, the standard way of studying lung tissue involves using liquid smoke extracts introduced to the tissue. However, the team at DRI took a more realistic approach by “generating wildfire smoke and pumping it directly into an exposure chamber containing lung tissues,” Nguyen said.
Nguyen explains that they found that a type of cancer cell seemed to be resilient to wildfire smoke. They also found that wildfire smoke from different geographic areas has unique consequences on lung cell functions. This research had him thinking about the effects of smoke on communities. Back home in California, Nguyen’s community has been damaged by fires in the past, and his community members have been exposed to fire smoke heavily over time. People who rely on evaporative cooling systems have had to choose between overheating or breathing clean air, Nguyen said. Working with this project and seeing the effects of smoke on lung tissue sparked the idea to develop a usable solution for these communities.
Fire is an issue that hits very close to home for Nguyen. “There are tribal members, who have lost homes like, one person in my tribe lost their home twice to wildfires,” Nguyen said.
A PROBLEM MADE WORSE BY CLIMATE CHANGE
In the western U.S., fire has always been a part of life, but decades of fire suppression have led to unhealthy fuel buildups, and changes in climate such as increased drought and heat are contributing to longer and more active fire seasons. These effects of climate change touch the whole region. Wildfire smoke is harsh and dangerous for communities even if a fire is not threatening them. Communities have an exacerbated problem of poor air quality in these times, and some people need extra air filtration equipment for their homes.
Tools like the AirNow map show the dangers of fire and smoke in real-time. And regions like Northern Nevada have issues with fire danger and pollution from larger fires in Western areas. Recently the danger of this smoke has grown and stayed hazardous during summer and fall.
As seen in the graphics below, EPA air quality data from the summer and fall seasons of 2020 and 2021 in the Reno and Douglas County areas of Nevada show PM 2.5 reached “moderate” to “hazardous” levels for longer than any other period on record. PM2.5 is particulate matter that is less than 2.5 micrometers in diameter and is generated by various sources including wildfire smoke.
A tile plot generated from the EPA website shows a long period of “moderate” to “hazardous” air quality in Reno, Nev. during the summer and fall of 2020 and 2021. These were the most severe periods of poor air quality on record for this region, dating back to 1999.
In Douglas County, Nev., PM2.5 data has only been collected regularly since 2013, but patterns support what has been observed in Reno. Residents of Douglas County experienced long periods of “moderate” to “hazardous” air quality during late summer and fall of 2020 and 2021.
TRIBAL HOUSING CHALLENGES
Tribal housing infrastructure is very susceptible to issues like wildfire and smoke. Standing buildings are usually old designs that can have issues like lead paint and toxic flooring. They can be manufactured homes or trailers that are long past expected use. Elements like extreme cold and heat waves are an issue throughout the Great Basin, but many reservation homes are only equipped with woodfire stoves for heating, and swamp coolers, window units, or nothing for cooling.
On the Stewart colony of the Washoe Tribe of Nevada and California, most homes have nothing or swamp coolers for cooling air.
“So, people have to choose between either dealing with the heat or if it’s smokey outside, you know, just dealing with the smoke,” Nguyen said.
Using only low-cost materials that are easily found at a home improvement store like Home Depot, Nguyen learned how to make a simple air filtration system alongside the swamp coolers that were built into many reservation homes.
The do-it-yourself (DIY) filter system has been around a while, Nguyen remarked. The type of system he learned to build has been shown to be both effective and safe by the U.S. EPA {US, 2022, Research on DIY Air Cleaners to Reduce Wildfire Smoke Indoors}. The cost is under $50 and uses a box fan, cardboard, tape, and two air filters.
This design was made and chosen for keeping cost and complexity low. We also talked about manufactured air purifiers. Nguyen said most will work for smoke, just one must research the filter and have money for the cost.
BUILDING A DIY AIR FILTER
The price and availability of air filters are major issues for rural Tribal Communities, due to the distance many people would need to travel to buy supplies and the economics of the areas. This means many communities are staying at risk of wildfire smoke (and wildfires themselves).
For the last year, the researchers have been doing workshops on different reservations in Northern Nevada and Northern California to teach people how to build low-cost filtration systems for their homes. They received a grant in May of 2022 from the DRI Lander Endowment that allows them to provide the materials to these communities for free. So far, they have held 10 workshops that have helped 93 people build their own air filter systems.
In this workshop, DRI researchers provided materials to make a DIY air filter that utilized two filters to make a wedge shape. However, Nguyen adds that in a pinch, you can simply use a single filter fastened to a box fan and still get effective results. He adds that for safety reasons, it is crucial to use a box fan built in 2012 or later as manufacturer safety regulations have since been updated.
Watching a workshop at the Washoe Tribe’s Community Center at Carson Colony on September 15, 2022, the process was very easy.
Nguyen showed the group how to build an air filter using a box fan, a decent size cardboard sheet cut from the fan’s box (~1.5ft. on each side), two MERV 13 filters, and a few yards of Duct Tape or similar brand of tape. Triangular pieces were cut from the cardboard, and then all was assembled. So simple that personal touches were naturally added: showing the graphic from the box or not; what tape color, and where the cable should come out for their house.
PHOTOS: THREE STEPS TO BUILDING A DIY AIR FILTER
Step 1: Tape two filters together using duct tape.
Step 2. Stand the filters on end, and tape them to a box fan in a triangular arrangement.
Step 3: Cut a triangular piece of cardboard to fit the top of the air filtration system. Attach with tape.
IMPROVING YOUR HOME’S AIR FILTRATION
Whether you live in a house, apartment, or another type of housing, if your home does have an air filtration system, it is important to know that filter quality is important. Filters are labeled by particles filtered: one is weakest, and 20 is strongest. The EPA recommends a better filter for filtering out smoke. However, you cannot just add thicker filters to your wall AC unit or central air system because that could damage the system. Additionally, two other rating systems are commonly used to classify filter quality: MPR and FPR. In these cases, it is recommended to use FPR 10 or MPR 1500 or better.
Filters work physically collecting certain size particulates, and filtration systems are designed for specific filter sizes. When we inspected the filters in our homes, Nguyen and I both found that our filters were the weakest possible – like looking through a sheet of paper — and probably not helping effectively during fire season.
There are a few different filter types available. HEPA filters are the gold standard and can remove most smoke particulates. However, availability can be an issue even in large population centers. Nguyen explained that during periods of heavy smoke, places like Home Depot run out and he has had to try and order cases that are on backorder.
Air filters also need to be replaced regularly. According to Nguyen, they should be replaced every three to six months, or possibly more often during periods of heavy smoke. He recommends checking air filters every month during fire season, and potentially replacing them monthly if you notice a visual change such as discoloration from the particulates being filtered.
“People have had an overwhelmingly positive response to the workshops,” Nguyen said. He added that several people expressed their excitement to use the DIY air purifiers to improve the air quality for both themselves and loved ones who may experience conditions like asthma or COPD. Workshop attendees also remarked to Nguyen and colleagues how helpful the DIY air purifiers were in combating hazardous downwind air quality resulting from the Northern California Mosquito wildfire event in the months of September and October 2022.
Piercen Nguyen, member of Enterprise Rancheria, Estom Yumeka Maidu Tribe, teaches a workshop on air quality and air filtration.
Credit: Provided by Piercen Nguyen.
Jan 5, 2023 | Blog, Featured researchers
What can prehistoric ceramics of the California deserts tell us about the past?
Jan. 5, 2023
LAS VEGAS, NEV.
Prehistoric Ceramics
California Desert District
Artifacts
A Q&A With Archaeologist Greg Haynes
DRI archaeologist Greg Haynes, Ph.D., recently completed a synthetic report on the prehistoric ceramic artifacts of the Colorado and Mojave deserts for the Bureau of Land Management’s (BLM) California Desert District (CDD). The CDD manages the 11 million-acre California Desert Conservation Area, which holds cultural artifacts dating back thousands of years. Following a century of research on the prehistoric people and cultures of the Colorado and Mojave deserts of California, this is the first large-scale synthesis focused on ceramics and what they can tell us about the past.
Haynes’ report provides guidance for understanding prehistoric ceramics, identifies research questions for their study, and aids in the evaluation of ceramic-bearing resources for the National Register of Historic Places.
DRI sat down with Haynes to discuss this project, which he calls “one of the highlights of my career.”
DRI: Could you tell me a little bit about your background and how you came to DRI?
Haynes: I’ve been a professional archaeologist for about 35 years. I have a B.A., M.A. and Ph.D. in anthropology and my research focus is on the prehistoric archaeology of western North America. The hunter gatherer populations in the Great Basin, Mojave Desert, and the small-scale agricultural societies on the Colorado Plateau, namely the ancestral Pueblos or Anasazi. I was on staff at DRI as an Associate Research Scientist in archaeology between 1992 to 1998 and returned in 2019.
DRI: And how did you come to be involved with this particular report?
Haynes: The project is focused on creating a new synthetic context for prehistoric ceramics in the deserts of Southeastern California. I was awarded the project in large part because I have a professional background in the area, and I had a nationally recognized ceramic expert in the American Southwest on my team, Dr. Karen Harry, a Professor of Anthropology at UNLV.
Left: Map of the Mojave Desert region. Right: Great Basin Brown Ware with incised decoration along rim, from the northeastern Mojave Desert.
DRI: Why is it important to catalog and identify ceramic artifacts?
Haynes: What the BLM wants to do, and what most archaeologists want to do with ceramic artifacts, is use them to identify cultural and temporal affiliations. Which groups made or used a particular site — that is, you find a pot sherd (piece of ceramic) and you want to infer what archaeological cultures made that ceramic and therefore used or made the archaeological site you’re looking at. They also want to know what time periods those ceramics date to. And many ceramics in the American Southwest are tied to a radiocarbon or tree-ring chronology, so they’re tightly constricted in time and space.
DRI: How are ceramics dated using radiocarbon dating methods or tree-ring chronology?
Haynes: In fact, they can’t be radiocarbon dated. They have to be in direct association with something that can either be radiocarbon dated or be dated through tree rings. For instance, if archaeologists find a pot in a house, and the house has a wooden roof beam over the top of it, the roof beam can be dated through a tree ring chronology (or dendrochronology). And by association, they therefore date the pot at that particular time period.
DRI: And radiocarbon dating only works for things that were previously living, right?
Haynes: Yes, that’s right. Now, there’s another type of dating nowadays called optically stimulated luminescence dating (OSL). And that you can use to actually date the ceramic itself, and as springboard projects develop from this particular one, I hope to learn more about OSL and perhaps use our own OSL lab here at DRI.
The important point though, is that the ceramics in the Colorado and Mojave deserts of Southeastern California, are primarily plain wares — they don’t have a lot of diagnostic features on them. And you need diagnostic features to be able to identify different types of pottery, and therefore the people who made them, as well as track them through time. Additionally, most of the pottery you find sits right on the ground surface. And if they are buried, there’s almost no association with organics that can be radiocarbon dated, tree rings, or stratification — that is, buried deposits that are layered so you can see how things change through time. So, they stump people. This inspired the BLM to seek a new synthetic context for these things, and new research directions about how we can use ceramics to tell us about precontact people and time.
DRI: When ceramics are found in the desert today, are they still collected and put into collections?
Haynes: In general, they’re not collected at all. And one reason is that there are hundreds of collections with tens of thousands of ceramic artifacts in repositories across the U.S. The BLM identified 16 repositories in the Western US that hold prehistoric ceramics from lands administered by the California Desert District. And while there is no absolute number of how many pieces of pottery are in those collections, it is tens of thousands — maybe even over 100,000.
An example of a Tizon Brown Ware body sherd from Arizona. The brown color is derived from residual mountain clays and the temper is visible on its surface.
DRI: And how old are some of the artifacts that you documented in this report?
Haynes: They don’t date much before about A.D. 1000. Most of them date no earlier than A.D. 1100 or 1200.
DRI: Would ceramic artifacts last much longer than that?
Haynes: Ceramic artifacts certainly would — they’re fired stone, essentially. Clay molded into something and then fired until they’re essentially pieces of stone.
DRI: When you’re making these associations between the ceramics and the people, how does that work?
Haynes: Well, there are different attributes on the ceramics, like surface colors. For instance, a particular type of ceramic called Lower Colorado Buff ware was known to be made by ancestral Yuman-speaking populations and they have particular types of colors because of their clay sources (buff, orange, or red). And you can also do that with temper (small chunks of rock or other material mixed into the clay to give it some texture, so it doesn’t break apart when it’s being fired and used). The types of clay you might find in Lower Colorado Buff ware is different than the clay in other types of pottery like Tizon Brown ware, which is also found in the Mojave and parts of the Colorado deserts of California, and colored brown. And that’s because it’s made from residual, igneous clays formed in the mountains as opposed to alluvial clays formed on the valley floor near rivers.
An example of Lower Colorado Buff painted ware from along the Colorado River. It is a red-on-orange bowl sherd with decorated elements on the interior of the vessel.
DRI: And what can we learn from these artifacts?
Haynes: Well, what the BLM wanted to learn is, can these plain wares in the Mojave and Colorado deserts of southeastern California actually tell us who was at a site and at what time? That can be done to some extent, but it can’t be done with a lot of detail. So, if you find a site that has a whole bunch of Lower Colorado Buff Ware you can say, okay, the people who lived here were ancestral Yuman-speaking folk, but these same ceramic artifacts have not been tied to a very good chronology. You can’t tell when the site was occupied based on the ceramics, unfortunately. And people have tried to do that for years, but there simply has not been enough radiocarbon dating or stratified deposits associated with those ceramics to track them through time. OSL offers an opportunity to do that, but it has to be fairly widespread — it would take a lot of ceramic artifacts to develop a well-established chronology for plain ware artifacts.
DRI: What do you mean by “wares”?
Haynes: A ware is a type of ceramic that is made by a particular prehistoric people. If you were an archaeologist, however, we could debate what a ware is for quite a long time. I’ll just leave it at that simple, big idea.
DRI: I think you touched on this, but why are the ceramic resources in the Colorado and Mojave Deserts difficult to characterize and differentiate?
Haynes: It’s because they don’t have a lot of distinguishing attributes on them, like painted motifs. For instance, if you find a painted circle or a square on a piece of pottery that’s made in one location, but you don’t find it in the next region over, that may be related to cultural differences. For plain wares, there’s not a lot of decoration, they’re just plain wares, very utilitarian. So that’s what makes them difficult and the fact that they have not been tied to a well-established chronology. And we’re often working with just little fragments of ceramics, rather than large pieces or entire vessels.
Another important point about the ceramic context is that you will not be able to learn much about the ceramics in terms of culture and history unless you examine attributes that change through space and time – like one single attribute, how it changes or varies through time and where you find it. So, one thing you could look at are changes in rim morphology or shape over space and time. Or you could look at the distribution over space and time of stucco (something put around the base of a pot, presumably to strengthen it). Or you could source these ceramics using specialized techniques to identify their geochemical signature or fingerprint, and see how far and wide, through space and time, that geochemical signature or fingerprint can be found.
Top: Rim morphologies: a. straight walled; b. chimney neck; c. outward/gently recurved; d. outward flaring/exaggerated recurved wall; e. inward/gently recurved wall; f. inward flaring/exaggerated inverted wall.
Bottom: An example of a Lower Colorado Buff plain sherd from along the Colorado River. It has a thick stucco applied to its exterior.
DRI: And by fingerprint, you mean a particular type of clay?
Haynes: That’s correct. You can do the same kind of analysis with what’s called burnishing, where the inside or the exterior of the pot is blackened, and then it’s polished. Where do you find burnishing, through space and through time?
DRI: Did you learn anything new or surprising while preparing this report?
Haynes: Part of the project was to go to a number of ceramic repositories and look at some of these collections. And I chose four museums to go to because they had by far the most ceramics. When you look at collections like that, you run across some incredibly interesting things that are just startling. For instance, I was at the Imperial Valley Desert Museum in El Centro. I was given this bag of prehistoric ceramics and they were Lower Colorado Buff ware, and I thought, “These are really weird — something’s wrong with them.” It was like the pottery itself had decorative waves in the clay, but they were clearly natural. So, I put the bag away because I was just confused by it. And I looked through other bags and looked at different pottery sherds. And the last day of the last hour, I came back to this bag because I’m just completely stymied by it. And I opened it up and looked at it and it dawned on me that this is an unfired pot. They had molded this either around the inside or the outside of a pot, but never fired it. And so, it was just natural clay shaped into a vessel that had somehow preserved on the surface.
Examples of LCBW vessels on display at the Imperial Valley Desert Museum (TOP: red-on-buff globular jar [olla] with chimney neck, medium to large; MIDDLE: flower pot recurved rim jar, medium to large, with stucco application; BOTTOM: globular [water] jar with chimney neck, medium to large).
DRI: So, it just kind of baked in the sun naturally?
Haynes: Exactly. Another bag of pottery I was looking at was in the San Diego Museum of Us and it was from a collection obtained from the Cronese Basin, just west of Baker, California. I looked at these potsherds, and they were really grey and crumbly. And they were painted with black designs. I looked at them and thought “This is weird. I don’t know what this is.” So, I put it away. And I came back to it. And it dawned on me that whoever made this piece of pottery in the Cronese Basin was trying to mimic an Anasazi black-on-grey ware. They were trying to mimic a pottery vessel made perhaps hundreds of miles away. It was startling.
That was really one of the highlights of my career here at DRI.
DRI: And how will this report be used by the Bureau of Land Management?
Haynes: It’s been distributed to all the BLM field offices in the CDD and used as a synthetic overview. It also builds consistency for recording these artifacts in the field. When archaeologists go out and conduct inventory for regulatory compliance purposes under the National Historic Preservation Act, it aids them in recommending a ceramic-bearing site eligible or ineligible for the National Register of Historic Places. In addition, it can also be used by investigators to contextualize the ceramics in Southeastern California. And then offers a chapter on new research directions for their analysis.
DRI: Any final thoughts?
Haynes: Well, it was a tough project for two years. But it was incredibly fun to do — one of the highlights of my career.
We’re (the project principals) planning an invited symposium in 2024 in Riverside, California to discuss these plain wares with other archaeologists and other specialists, as well as Native American tribal members.
More Information
The technical report is the property of the BLM-CDD and will become available in the future on their website.
Dec 21, 2022 | Blog, Featured researchers
Tim Minor: Celebrating a Career in GIS and Remote Sensing
DECEMBER 21, 2022
RENO, NEV.
Tim Minor
GIS
Remote Sensing
Above: Minor piloting a drone; he is a FAA-certified Remote Pilot in Command.
Tim Minor, M.A, recently retired from DRI after 31 years. His successful career as a geographic information systems (GIS) and remote sensing scientist brought him to DRI in 1991; he served as Deputy Director of DEES from 2012 to 2018, and Interim Executive Division Director of DEES from 2018 to 2021.
Minor’s work uses satellite and drone imagery to map and analyze invasive species, surface disturbance, ground water resources, and mountain watershed water quality, among many other applications. He is a FAA-certified Remote Pilot in Command, and he taught introductory and advanced courses in GIS applications and image processing methods.
DRI sat down with Minor to discuss his long career as a scientist and competitive runner, his career highlights (featuring a Ghanaian marathon), and his advice for young scientists (including his own son, Blake, an associate research scientist in DHS).
Minor conducting field work with DRI biologist Mary Cablk, whom he frequently worked alongside.
DRI: What first brought you to DRI?
Minor: Well, I grew up in Pacific Grove, California, and went to Monterey Peninsula College, and then got a scholarship to come to the University of Nevada. I only stayed two years, finished off my degree and went back to grad school at U.C. Santa Barbara. I got an offer to come up to Reno in 1989 to work for a mining company that needed a geologic remote sensing person. While I was working for them, I started meeting some people from DRI, and I just thought it was an amazing place.
There was a guy named Jonathan Davis who was a mentor of mine. He was one of my teachers at UNR and I was really looking forward to working with him, Dave Mouat, and some of the other amazing people at DRI. I didn’t know quite how that would work, but things just kind of fell in place. I got a job at DRI in 1991.
The sad part was that I was really looking forward to working with Jonathan Davis — his wife worked with me at my mining company — but they were involved in a horrible car accident a couple of months before I got to DRI; Jonathan was tragically killed. We have a Jonathan Davis scholarship in DEES in his name.
DRI: And you’ve been at DRI ever since?
Minor: Yep, I stayed at DRI for 31 years. I think one of the things that really helped me is that in the GIS/remote sensing field, there are opportunities to work on a lot of diverse projects. I started off working on an air quality project, and then I started doing a lot of stuff with water, biology, and vegetation. And it just kind of took off from there — it was very rewarding.
You know, I have a master’s degree, not a Ph.D. So, despite everyone calling me doctor all these years, I’m not. What I hope to have inspired here is that with your master’s, you can still go pretty far at DRI. I’m pretty proud of the fact that I became a director with a master’s.
I never really felt a ton of pressure to get my PhD. I was also still competing a lot – I was still running very seriously in the 90s and into the 2000s, so I had to make some choices. And I chose to continue to be a runner and have a career on that side instead of going after the Ph.D.
A newspaper clipping from the Reno-Gazette Journal that covered Minor’s 1993 marathon race in Ghana. Minor finished in 9th place with only 3 hours of sleep in the preceding two days due to traveling.
DRI: Tell me more about your competitive running career.
Minor: I ran competitively for a long time, from the time I was 15 to age 51. I ran for Nevada as an undergrad and then I just kept going.
DRI: What inspired you to become a specialist in remote sensing?
Minor: I’ve always been a map freak. I think since I was four or five years old, I was the geeky kid in the back of the car telling my mom and dad where to go because I was looking at maps. I was just fascinated by spatial relationships. People talk about cognitive mapping and our brains and I just always loved thinking about, “Okay, where are we going, and how do we get there?” But I didn’t know what I could do with that. I remember as I got to junior college, I was like, “What am I going to really do? Is there anything you could do with this stuff?” And that’s kind of when remote sensing was starting to really take off and become a science unto itself. And then of course, GIS came along later, but the key for me was taking remote sensing classes at UNR back in the late 70s. And that got me even more excited about it and the possibilities.
But what really helped me take off was UC Santa Barbara. Santa Barbara was way ahead of its time in terms of quantitative spatial analysis in geography. Every job I’ve gotten has been a UCSB connection, even at DRI.
DRI: What are some of your career highlights?
Minor: The biggest highlight goes all the way back to ’93 through ’98, when I was working on the Hilton Foundation projects with World Vision doing water development in developing countries. In 1993, I went to Ghana, West Africa and participated in some of the initial fieldwork that was involved in trying to develop better drinking water access for small villages in the central part of Ghana. And it was the most amazing experience.
I started off things with a bang in ‘93. I got off the plane and slept that night, and then the next morning ran a marathon. There was a marathon going on in the capital of Accra and one of my colleagues who was already there had signed me up. I thought he was just joking and I didn’t even know it was a full marathon, it was a little crazy. I couldn’t drink the water at the aid stations, so they had to drive around and give me water, but they got lost. So, it got a little hot as you can imagine. But talk about total immersion right off the bat. I just fell in love with the country and the people.
I love everything that came out of that. I showed my daughter, Emily, the pictures from Ghana and shared my experiences. And when she graduated from high school, she went over and worked in an orphanage in Ghana and just loved it herself. So, it was a really cool family legacy thing. As for the project itself, you know, sometimes in research, you wonder “What is this really doing for people? How is it impacting society? How is it impacting people and helping them?” Well, something like drilling a water well in a small village that can totally change the quality of the water and the quality of the life was pretty impactful. Without a doubt that was the best thing I was ever involved in.
DRI: Tell me more about the project in Ghana.
Minor: Well, it was unique in that it was a partnership, with Ghanaians basically running the program there. So many times with some of these projects in developing countries, you have people who want to do well but it ends up getting a little cloudy. We saw programs where other European countries had come in and tried to build mechanized wells, but the problem was that when they broke down, nobody would come to fix them. So, they were just gathering cobwebs and dust. The World Vision’s trick was to build simple hand pump wells, and they taught the villagers how to repair them. Our role was basically putting the x’s on the ground — we were telling them based on our geophysics and our remote sensing and our hydrologic knowledge, this is probably the best place to drill. Other projects would often just drill in the center of the village without any real forethought about the best hydrological position. And because it was hand pumps, water tables had to be relatively shallow, right? They couldn’t be super deep wells.
DRI: Are these wells still in use?
Minor: Very much so, yes. Braimah Apambire is involved with this project and he’s done some amazing things. And so yes, a lot of those wells and things are still active and still going. It’s pretty cool.
Tim Minor speaking with students at a STEM camp held at the University of Nevada, Reno in September.
DRI: How have things changed since you first started your career?
Minor: Well, let’s start with the science itself. Back in the day — and I really feel like an old geezer when I talk about this — computing power wasn’t what it is now. And I share this with my son Blake, who is a hydrologist at DRI in DHS – he’s got an office 50 feet away from the cube I’m in now. And it’s a little surreal that he is an assistant research scientist at DRI, but he’s been working at DRI for almost nine years because he started as an undergrad. I always joke with him that he has no idea how good he has it, with Earth Engine and the processing power he has at his fingertips. What takes him a few minutes to do now literally used to take me days.
The advancement of computer technology, the cloud and all the other computing power that’s out there, it’s just absolutely revolutionized the science of remote sensing, GIS, and spatial analysis. To watch that over my 41 years of working has just been unbelievable.
I love where DRI has gone. I’ll be very frank because I was on the Diversity Committee, but I’m encouraged to see that we’re finally reaching some diversity goals that I think we could actually feel good about. We’ve still got a ways to go, definitely. I really respect my longtime female colleagues at DRI — they’re very much pioneers in what they do. I think it’s so fantastic that we are finally getting there. You know, it’s just taken a long time.
In general, I like the diversity at DRI and how it’s evolved. I always thought that was one of our strengths, and one of our biggest selling points, our scientific diversity. One of the huge advantages I had as a GIS/remote sensing expert is all these different science disciplines use GIS and remote sensing in different ways. So, one day I would be working with the hydrologists, and the next day with the air quality folks, and the next day with the biologists. It’s just a really cool place for me to work and I think it’s one of the ways I was able to sustain my funding, by staying diversified. When I became a director, I told people all the time, “The key to us surviving at this place is diversification.” Both within your scientific discipline, but also thinking outside your discipline and how you may be able to work with others.
DRI: How has working at DRI impacted your scientific research and network?
Minor: The network’s been amazing. We used to joke about ourselves being the Santa Barbara mafia. We’ve always had this pretty good network, if you will, of all these people from Santa Barbara who have gone off and worked in all kinds of amazing places, and DRI just added to that exponentially. The connectivity and the networking I’ve been able to do across the world has been astounding. I’m just amazed at all the wonderful people I’ve been able to work with from countries like Brazil and Ghana, Israel and Europe, Canada, Mexico, Australia, China. It’s just been phenomenal. It’s incredible how your network just expands worldwide.
DRI: What advice do you have for young scientists?
Minor: Diversify. You know, I would tell people to do what I didn’t do – don’t be in such a rush. Do a little gap program. Go check things out. Go travel. And when you travel, maybe go visit a science center and see what they’re doing, it helps establish your future network. Learn a language. It’s fantastic, it helps with everything. Work on your math skills. Math and stats, those will take you a long way, especially in my particular field, statistics was so valuable. But the biggest thing is diversifying — get a minor in something. I think that’s what’s really important. Don’t be so siloed in with how you professionally identify yourself.
DRI: Do you speak another language?
Minor: A little bit of French, and one of the goals I have now that I’m retired is to get much better with Spanish.
DRI: That’s a great goal. That also feeds into my next question: what are your plans for retirement?
Minor: Well, become better at Spanish, and travel. Just in the last eight months, we went to Europe and did a bike tour, and took my parents to Kauai. And then we went to Sayulita, Mexico to do a little surfing.
We have a trailer so we’re going to be doing a lot of camping. I used to coach high school cross country and track for nine years, and I may go back to coaching because there are many aspects of it I enjoyed. My wife Shannon and I are race directors for Moms on the Run, a local charity race that supports cancer survivors. That keeps us pretty busy in the winter and spring.
Also, I’m doing the classic DRI semi-retirement, so I’m coming back January 3rd as an hourly. I’m very involved in the Integrated Terrain Analysis Program. I did a phased retirement, and what it taught me is I love science too much — I don’t want to just completely walk away.
DRI: Is there anything else you think is important that we didn’t discuss?
Minor: Well, I’ve always had a goal to work with Blake on a project. It’d be pretty cool to work with my son.
It’s just been a fantastic adventure. All the things I’ve gotten to do, if I’m writing up my life story – DRI was such a catalyst for some amazing experiences. I wouldn’t trade it for anything. It was a little scary when I ventured into the administrative realm. I got voted in as a deputy director, and then years later I was suddenly interim director. But I wouldn’t trade any of that because as a director I got to find out about all the other unique things people were doing, within our own division and across the institute. You know, things that you sometimes aren’t aware of when you’ve got your head down and are focused on your own research. It was just amazing to see what people were doing.
Nov 21, 2022 | Announcements, News releases
Scientists Uncover Conditions Key to Formation of the Great Barrier Reef
November 21, 2022
RENO, Nevada
K’gari
Sand Island
Great Barrier Reef
Above: Fraser Island, off Australia’s eastern Queensland coast, is the world’s largest sand island, stretching over 120km. Photo by John Natoli, istock.com.
Credit: John Natoli, iStock Photo.
New research shows that the growth of K’gari, the world’s largest sand island, was crucial for creating the clear waters that allowed the Great Barrier Reef to flourish.
Australia’s famed Great Barrier Reef is known for being the world’s largest coral reef – overflowing with marine life, it is the only living thing visible from space. Scientists have long sought to understand the conditions that led to the reef’s formation, as conditions seemed suitable long before the reef’s birth. Now, a new study claims the answer might be K’gari, the world’s largest sand island (also known as Frasier Island).
Nick Patton, Ph.D., a postdoctoral researcher now at DRI, teamed up with an international group of researchers from Sweden, New Zealand, Australia, and the United States for the study published Nov. 14 in Nature GeoScience. Their research showed that the sand island formed between 700,000 and 800,000 years ago, and that the reef was only able to establish once the island protected it from the northern flow of sand that naturally occurs in this area.
“The Great Barrier Reef is the world’s largest coral reef ecosystem, yet what I find so interesting is that we still do not really know what caused its initial inception,” says Daniel Ellerton, Ph.D., of Stockholm University and the study’s lead author. “Previous research has highlighted that several mechanisms are likely responsible and here we demonstrate an additional factor that should be considered.”
K’gari juts out like a finger from Australia’s eastern coast below the far southern reach of the Great Barrier Reef. The island itself is a UNESCO World Heritage area, covered with lush rainforest and freshwater dune lakes. It formed as wave action carried sediment north along the coast. As the sediment accumulated, the island formed a barrier that protected the coastal region to the north. Without the island, the coral reef would be covered in this drifting sand.
The timing of the island’s formation is due to a major shift in the Earth’s climate called the Mid-Pleistocene Transition, which saw glacial cycles extend from about 40,000 years to around 100,000. The longer cycle allowed for ice caps to grow larger, decreasing sea levels across the planet.
“Our work highlights how changes in sea-level variability approximately 700,000 years ago directly caused a dramatic reorganization of the coast and the formation of the Great Barrier Reef, as we know it today,” says Patton.
There is evidence that the Great Barrier Reef is around 650,000 years old, supporting the theory that K’gari directed sand away from Australia’s northeastern coast, providing the clear waters needed for coral growth.
To determine the age of K’gari, the researchers used a method called optically stimulated luminescence dating. This method provides an age estimate for the last time that sediments, like quartz sand, were exposed to light.
“These large coastal dune fields have rich geologic and climatic archives that provide important information on Earth’s history,” Patton says.
The research team engaged with the traditional inhabitants of K’gari and the adjacent Cooloola Sand Mass (the Butchulla and Kabi’ Kabi’ peoples, respectively) through an Australian Research Council Discovery Grant to understand the formation and evolution of these systems.
Studies that look back in time don’t only help us understand how ecosystems formed – they can also provide a glimpse into the possible future, the researchers say.
“Sea-level change is something we often hear about in the news, but I did not realize the sheer power of the ocean until working on this project,” Patton says. “As we observe in this study, rising and falling sea-levels have the ability to both create and destroy entire coastlines and ecosystems.”
“This research highlights the complex evolution of coastal environments over long timescales,” Ellerton says. “Coastlines globally are at risk from rising sea-levels under predicted global warming which poses a serious threat. If we are going to manage coasts and coral reefs under climate change scenarios, we need to understand how these complex responses occur.”
More Information:
The full study, Fraser Island and initiation of the Great Barrier Reef linked by Middle Pleistocene sea-level change, is available from Nature Geoscience: https://doi.org/10.1038/s41561-022-01062-6
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Nov 15, 2022 | Announcements, News releases
Footprints Claimed as Evidence of Ice Age Humans in North America Need Better Dating, New Research Shows
November 15, 2022
RENO, Nevada
Footprints
Dating
Ice Age Humans
Above: Closeup photographs of excavated human trackways from the shores of an ice age lake that once filled the Tularosa Basin in south-central New Mexico, in what is now White Sands National Park.
Credit: Jeff Pigati & Kathleen Springer, USGS.
The preserved footprints found in New Mexico’s Lake Otero Basin would upend scientific understanding of how, and when, humans first arrived in North America, if they are accurately dated. A new study brings the age claim into question.
The wide expanse of an ancient lakebed in New Mexico holds the preserved footprints of life that roamed millennia ago. Giant sloths and mammoths left their mark, and alongside them, signs of our human ancestors. Research published in September 2021 claimed that these footprints are “definitive evidence of human occupation of North America” during the last ice age, dating back to between 23 and 21 thousand years ago. Now, a new
study disputes the evidence of such an early age.
Scientists from DRI, Kansas State University, the University of Nevada, Reno, and Oregon State University caution in Quaternary Research that the dating evidence is insufficient for claims that would so radically alter our understanding of when, and how, humans first arrived in North America. Using the same dating method and materials, the new study shows that the footprints could have been left thousands of years later than originally claimed.
“I read the original Science article on the human footprints at White Sands and was initially struck not only by how tremendous the footprints were on their own, but how important accurate dating would be,” says Charles Oviatt, emeritus professor of geology at Kansas State University and one of the new study’s authors. “I saw potential problems with the scientific tests of the dates reported in the Science paper.”
“It really does throw a lot of what we think we know into question,” says David Rhode, Ph.D., a paleoecologist at DRI and co-author of the new study. “That’s why it’s important to really nail down this age, and why we’re suggesting that we need better evidence.”
Archaeologists and historians use a number of methods to determine the timing of historic events. Based on these methods, scientists tend to agree that the earliest known dates of humanity’s colonization of North America lie between 14 and 16 thousand years ago, after the last ice age. If the original claims are correct, current chronological models in fields as varied as paleogenetics and regional geochronology would need to be reevaluated.
“23 to 21 thousand years ago is in a timeframe where you need to really pay attention to how people got into North America,” says Rhode. “At that time, there was a huge, mile-high mountain range of ice covering Canada to the north, and the pathway down the Pacific Coast wasn’t very accommodating either – so it may have been that people had to come here much earlier than that.”
By studying ancient DNA from human fossils and using rates of genetic change (a sort of molecular clock using DNA), paleogeneticists surmise that the American Southwest was first occupied no earlier than 20 thousand years ago. If the footprints are older, it throws into question the use and integrity of these genetic models. It’s possible that the ages from one study at a single site in a New Mexico lake basin are valid, and that age estimates from a variety of other fields are invalid, the authors write, but more robust evidence is needed to confirm the claims.
At the center of the debate are the tiny seeds of an aquatic plant used to age the footprints. The timeframe for the seeds was identified using radiocarbon dating methods, in which researchers examine a type of carbon known as Carbon-14. Carbon-14 originates in the atmosphere and is absorbed by plants through photosynthesis. These carbon isotopes decay at a constant rate over time, and comparing the amount of Carbon-14 in the atmosphere to the amount present in fossilized plant material allows scientists to determine their approximate age. But the plant species used, Ruppia cirrhosa, grows underwater and therefore obtains much of its carbon for photosynthesis not directly from the atmosphere as terrestrial plants do, but from dissolved carbon atoms in the water.
“While the researchers recognize the problem, they underestimate the basic biology of the plant,” says Rhode. “For the most part, it’s using the carbon it finds in the lake waters. And in most cases, that means it’s taking in carbon from sources other than the contemporary atmosphere – sources which are usually pretty old.”
This method is likely to give radiocarbon-based age estimates of the plant that are much older than the plants themselves. Ancient carbon enters the groundwater of the Lake Otero basin from eroded bedrock of the Tularosa Valley and the surrounding mountains, and occurs in extensive calcium carbonate deposits throughout the basin.
The authors demonstrated this effect by examining Ruppia plant material with a known age from the same region. Botanists collected living Ruppia plants from a nearby spring-fed pond in 1947 and archived them at the University of New Mexico herbarium. Using the same radiocarbon dating method, the plants that were alive in 1947 returned a radiocarbon date suggesting they were about 7400 years old, an offset resulting from the use of ancient groundwater by the plant. The authors note that if the ages of the Ruppia seeds dated from the human footprints were also offset by roughly 7400 years, their real age would be between 15 and 13 thousand years old – a date which aligns with ages of several other known early North American archaeological sites.
The dating of the footprints can be resolved through other methods, including radiocarbon dating of terrestrial plants (which use atmospheric carbon and not carbon from groundwater) and optically stimulated luminescence dating of quartz found in the sediment, the authors write.
“These trackways really are a great resource for understanding the past, there’s no doubt about that,” says Rhode. “I’d love to see them myself. I’m just cautious about the ages that the researchers put to them.”
More Information:
The full study, A critical assessment of claims that human footprints in the Lake Otero basin, New Mexico date to the Last Glacial Maximum, is available from Quaternary Research: https://doi.org/10.1017/qua.2022.38
Study authors include Charles Oviatt (K-State), David B. Madsen (UNR), David Rhode (DRI), and Loren G. Davis (OSU).
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About the University of Nevada, Reno
The University of Nevada, Reno, is a public research university that is committed to the promise of a future powered by knowledge. Nevada’s land-grant university founded in 1874, the University serves 21,000 students. The University is a comprehensive, doctoral university, classified as an R1 institution with very high research activity by the Carnegie Classification of Institutions of Higher Education. Additionally, it has attained the prestigious “Carnegie Engaged” classification, reflecting its student and institutional impact on civic engagement and service, fostered by extensive community and statewide collaborations. More than $800 million in advanced labs, residence halls and facilities has been invested on campus since 2009. It is home to the University of Nevada, Reno School of Medicine and Wolf Pack Athletics, maintains a statewide outreach mission and presence through programs such as the University of Nevada, Reno Extension, Nevada Bureau of Mines and Geology, Small Business Development Center, Nevada Seismological Laboratory, and is part of the Nevada System of Higher Education. Through a commitment to world-improving research, student success and outreach benefiting the communities and businesses of Nevada, the University has impact across the state and around the world. For more information, visit www.unr.edu.
Nov 8, 2022 | News releases, Research findings
Childhood Trauma
Mental Health
Physical Health
Above: The logos for the Healthy Nevada Project, DRI, and Renown Health.
Childhood Traumas Strongly Impact Both Mental and Physical Health
Adult risk for obesity, chronic pain, migraines, and mental disorders increases in proportion to the number and types of traumas experienced in childhood
The social environments we grow up in are critical when determining our wellbeing and health later in life. Most Americans (67%) report experiencing at least one traumatic event in childhood, and a new study shows that these experiences have significant impacts on our health risks as adults. Physical illnesses such as obesity and chronic pain are affected, but mental disorders show the most significant association, including post-traumatic stress disorder (PTSD), bipolar disorder, substance abuse, and depression.
Scientists from DRI and the University of Nevada, Reno, led the study, published on Oct. 6 in the journal Frontiers in Psychiatry. More than 16,000 people from the Reno area volunteered for the research as part of the Healthy Nevada Project, one of the most visible genomic studies in the United States powered by Renown Health. Participants answered questions about their social environments before age 18, including experiences with emotional, physical, or sexual mistreatment, neglect, and substance abuse in the household. The researchers combined this information with anonymized medical records to build on existing research about how childhood traumas affect health outcomes.
“The study provides insight as to how social determinants of health may influence adult health disorders,” said Robert Read, M.S., a researcher at the Center for Genomic Medicine at DRI and one of the study’s lead authors.
Nearly two-thirds (66%) of participants recalled at least one type of trauma, and almost one-quarter (24%) reported experiencing more than four. Women and people of African American and Latinx descent reported a higher prevalence of traumatic experiences than men and those with European ancestry, but people in low-income households were the most impacted.
Thirteen mental illnesses showed the most statistically significant associations, including mood disorders, depression, PTSD, anxiety disorders, eating disorders, schizophrenia, and substance abuse. For every reported type of abuse experienced in childhood, a participant’s risk for PTSD increased 47%. Each cumulative trauma also increased one’s risk for making a suicide attempt by 33%.
The researchers note that although the study is rooted in Nevada — which has high rates of adults with mental illness and poor access to care — it provides a window into deeply rooted public health issues across the nation.
“Combatting the prevalence of childhood traumas is a complex problem,” said Karen Schlauch, Ph.D., a bioinformatics researcher at DRI and one of the study’s lead authors. “Personal experiences with neglect and abuse are more challenging to address, but many of the underlying issues can be tackled at the community level, like food insecurity and poverty.”
Beyond improving our understanding of how early social environments influence our health, Schlauch says that the next target for research is understanding how childhood traumas may be linked with specific traits like impulsivity — a prominent trait in Nevada’s gambling communities.
“In order to address the devastating impacts of early-life adversity on local population health and inequities, we must focus on the dominant social and behavioral mechanisms affecting Nevadans,” said Stephanie Koning, Ph.D., an assistant professor at the School of Public Health at the University of Nevada, Reno, and study co-author. “Beyond how population needs drive our research, we are partnering with community-based organizations to promote evidence-based interventions across individual, community, and state levels.”
As the study team expands their analysis of the health impacts of early-life adversity, they are exploring how to use the Healthy Nevada Project database to inform community-based interventions. They’ve partnered with community institutional partners — including the Stacie Mathewson Behavioral Health & Addiction Institute and Northern Nevada HOPES — for research and advocacy focused on promoting healthy childhood social environments and well-being throughout an individual’s life.
More information:
The full text of the study, Using phenome-wide association studies and the SF-12 quality of life metric to identify profound consequences of adverse childhood experiences on adult mental and physical health in a Northern Nevadan population, is available from Frontiers in Psychiatry: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583677/.
This project was funded by the Stacie Mathewson Behavioral Health and Addiction Institute, Renown Health, and the Renown Health Foundation. Study authors included Karen Schlauch (DRI), Robert Read (DRI), Stephanie Koning (UNR), Iva Neveux (DRI), and Joseph Grzymski (DRI/Renown Health).
For more information on the Healthy Nevada Project®, please visit: https://healthynv.org/.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About Renown
Renown Health is the region’s largest, locally governed, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.
About the University of Nevada, Reno
The University of Nevada, Reno, is a public research university that is committed to the promise of a future powered by knowledge. Nevada’s land-grant university founded in 1874, the University serves 21,000 students. The University is a comprehensive, doctoral university, classified as an R1 institution with very high research activity by the Carnegie Classification of Institutions of Higher Education. Additionally, it has attained the prestigious “Carnegie Engaged” classification, reflecting its student and institutional impact on civic engagement and service, fostered by extensive community and statewide collaborations. More than $800 million in advanced labs, residence halls and facilities has been invested on campus since 2009. It is home to the University of Nevada, Reno School of Medicine and Wolf Pack Athletics, maintains a statewide outreach mission and presence through programs such as the University of Nevada, Reno Extension, Nevada Bureau of Mines and Geology, Small Business Development Center, Nevada Seismological Laboratory, and is part of the Nevada System of Higher Education. Through a commitment to world-improving research, student success and outreach benefiting the communities and businesses of Nevada, the University has impact across the state and around the world. For more information, visit www.unr.edu.
Oct 26, 2022 | Announcements, News releases
Elevated Levels of Arsenic and Other Metals Found in Nevada’s Private Wells
October 26, 2022
RENO, Nevada
Water Treatment
Arsenic
Private Wells
Above: Researchers test a private well water for traces as metals such as arsenic in Washoe Valley. Private wells are the primary source of drinking water, serving 182,000 people outside of Nevada’s bustling cities.
Credit: Monica Arienzo/DRI.
Study shows that many household wells need better drinking water treatment and monitoring
Outside of Nevada’s bustling cities, private wells are the primary source of drinking water, serving 182,000 people. Yet some of the tested private wells in Nevada are contaminated with levels of heavy metals that exceed federal, state or health-based guidelines, a new study published in Science of The Total Environment shows. Consuming water contaminated by metals such as arsenic can cause adverse health effects.
Scientists from DRI and the University of Hawaii Cancer Center recruited households with private wells through the Healthy Nevada Project. Households were sent free water testing kits, and participants were notified of their water quality results and recommended actions they could take. More than 170 households participated in the research, with the majority from Northern Nevada around Reno, Carson City and Fallon.
“The goals of the Healthy Nevada project are to understand how genetics, environment, social factors and healthcare interact. We directly engaged our participants to better understand environmental contaminants that may cause adverse health outcomes,” said co-author Joseph Grzymski, Ph.D., research professor at DRI, principal investigator of the Healthy Nevada Project®, and chief scientific officer for Renown Health.
Nearly one-quarter (22%) of the private wells sampled had arsenic that exceeded safe levels determined by the Environmental Protection Agency (EPA) — with levels 80 times higher than the limit in some cases. Elevated levels of uranium, lead, cadmium, and iron were also found.
Monica Arienzo, Ph.D., and Erika Robtoy, undergraduate student at the University of Nevada, Reno collect well water samples in Palomino Valley, Nevada.
Credit: Daniel Saftner/DRI.
“We know from previous research that Nevada’s arid climate and geologic landscape produce these heavy metals in our groundwater,” says Monica Arienzo, Ph.D., an associate research professor at DRI who led the study. “It was important for us to reach out to community members with private wells to see how this is impacting the safety of their drinking water.”
Fewer than half (41%) of the wells sampled used water treatment systems, and some treated water samples still contained arsenic levels over EPA guidelines. Although average levels of heavy metal contaminants were lower in treated water, many homes were unable to reduce contaminants to levels considered safe.
The state leaves private well owners responsible for monitoring their own water quality, and well water testing helps ensure water is safe to drink. This study shows that more frequent testing is needed to ensure Nevada’s rural communities have safe drinking water. This is particularly important as the effects of climate change and population growth alter the chemistry of groundwater, potentially increasing metal concentrations.
“The results emphasize the importance of regular water quality monitoring and treatment systems,” said co-author Daniel Saftner, M.S., assistant research scientist at DRI.
Although the research focused on wells in Nevada, other arid communities in Western states are facing similar risks of water contamination.
More information:
The full study, Naturally Occurring Metals in Unregulated Domestic Wells in Nevada, USA, is available from Science of The Total Environment: https://doi.org/10.1016/j.scitotenv.2022.158277.
This project was funded by an NIH award (#1R01ES030948-01). The Healthy Nevada Project was funded by grants from Renown Health and the Renown Health Foundation. Study authors included Monica M. Arienzo (DRI), Daniel Saftner (DRI), Steven N. Bacon (DRI), Erika Robtoy (DRI), Iva Neveux (DRI), Karen Schlauch (DRI), Michele Carbone (University of Hawaii Cancer Center) and Joseph Grzymski (DRI/Renown Health).
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About Renown Health
Renown Health is Nevada’s largest, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe, and northeast California. With a diverse workforce of more than 6,500 employees, Renown has fostered a longstanding culture of excellence, determination, and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in a community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.
About the University of Hawaiʻi Cancer Center
The University of Hawaiʻi Cancer Center through its various activities, including scientific research and clinical trials, adds more than $57 million to the Oʻahu economy. It is one of only 71 research institutions designated by the National Cancer Institute. An organized research unit within the University of Hawaiʻi at Mānoa, the UH Cancer Center is dedicated to eliminating cancer through research, education, patient care and community outreach with an emphasis on the unique ethnic, cultural, and environmental characteristics of Hawaiʻi and the Pacific. Learn more at https://www.uhcancercenter.org. Like us on Facebook at https://www.facebook.com/UHCancerCenter. Follow us on Twitter @UHCancerCenter.
Media Contacts:
Renown Public Relations
M: 775.691.7308
E: news@renown.org
Detra Page – DRI
M: 702.591.3786
E: Detra.Page@dri.edu
Oct 11, 2022 | Announcements, News releases
DRI Welcomes Emily McDonald-Williams as STEM Education Program Manager
October 11, 2022
RENO, Nevada
DRI is excited to welcome Emily McDonald-Williams as its STEM Education Program Manager. She brings experience as a 4-H Coordinator at Oregon State University, where she focused on developing and expanding STEM education opportunities on a state, national, and international basis. Prior to her work at Oregon State University, she worked with Montana State Parks and the Bureau of Land Management with a focus on integrating natural resource content with hands-on education throughout the community.
“Emily’s experience in STEM education and her desire to expand high-quality programs and offerings makes her a terrific addition to DRI’s STEM Education group,” said DRI Executive Director of the Division of Earth and Ecosystem Sciences Philippe Vidon, Ph.D. “We are delighted for Emily to lead DRI’s K-12 STEM Education program.”
Along with her dedication to expanding high-quality STEM education opportunities, McDonald-Williams will focus on designing curriculum that is inclusive, accessible, and provided equitably.
“I’m thrilled to lead DRI’s impactful K-12 STEM education program,” said McDonald-Williams. “My experience in STEM education, community outreach, and environmental conservation and restoration work has prepared me for this new role.”
In addition to obtaining a Bachelor of Arts in environmental studies and biology from the University of California, Santa Cruz, McDonald-Williams also holds a Master of Science in education from Southern Oregon University, with a concentration in STEM curriculum and instruction.
Emily McDonald-Williams, STEM Education Program Manager at Desert Research Institute (DRI).
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Sep 20, 2022 | Announcements, News releases
Scientists Unveil New System for Naming Majority of the World’s Microorganisms
September 20, 2022
LAS VEGAS, Nev.
Microorganisms
SeqCode
Prokaryotes
Above: Fluorescent-stained bacteria (pink) and archaea (green) from near-boiling water from Great Boiling Spring in Gerlach, Nevada. Photo credit: Jeremy Dodsworth.
The SeqCode is a universal system, created through collaboration of hundreds of scientists, to formally register and name single-celled microorganisms known as prokaryotes.
Reposted from https://www.unlv.edu/news/release/scientists-unveil-new-system-naming-majority-worlds-microorganisms.
What’s in a name? For microorganisms, apparently a lot.
Prokaryotes are single-celled microorganisms – bacteria are an example – that are abundant the world over. They exist in the oceans, in soils, in extreme environments like hot springs, and even alongside and inside other organisms including humans.
In short, they’re everywhere, and scientists worldwide are working to both categorize and communicate about them. But here’s the rub: Most don’t have a name.
Less than 0.2% of known prokaryotes have been formally named because current regulations – described in the International Code of Nomenclature of Prokaryotes (ICNP) – require new species to be grown in a lab and freely distributed as pure and viable cultures in collections. Essentially, to name it you have to have multiple physical specimens to prove it.
In an article published Sept. 19 in the journal Nature Microbiology, a team of scientists present a new system, the SeqCode, and a corresponding registration portal that could help microbiologists effectively categorize and communicate about the massive number of identified yet uncultivated prokaryotes.
“Our goal is to unite field and laboratory studies in microbiology and respond to significant recent advancements in environmental genomics by providing a path to formally name the majority of identified yet unnamed prokaryotes,” said UNLV microbiologist Brian Hedlund, lead author on the paper and key collaborator on the development of the SeqCode. “The SeqCode should serve the community by promoting high genome quality standards, good naming practice, and a well-ordered database.”
Creating the SeqCode
Nearly 850 scientists representing multiple disciplines from more than 40 countries participated in a series of NSF-funded online workshops in 2021 to develop the new SeqCode, which uses genome sequence data for both cultivated and uncultivated prokaryotes as the basis for naming prokaryotes.
Since the 2000s, scientists who study prokaryotes in environments all over the world have used environmental genomics techniques to sample and study them, and hundreds of thousands of genome sequences are available in public databases. The community participating in the workshops, which were organized by Hedlund and colleague Anna-Louise Reysenbach from Portland State University, overwhelmingly supported the development of an alternative to the ICNP that would accept DNA sequence data and ultimately improve resources for researchers.
“The key pieces are in place for an orderly expansion of prokaryotic systematics to the entire prokaryotic tree of life,” said William B. Whitman, SeqCode corresponding author and University of Georgia microbiologist. “This expansion will serve the research and the broader community by providing a common language for all prokaryotes that is systematically organized and supported by data-rich genomic datasets and associated metadata.”
To qualify for inclusion in the SeqCode, genomeses must meet rigorous scientific standards to ensure quality, stability, and open data sharing. And, though it’s not yet universally accepted, the SeqCode fundamentally aligns with established international principles for naming other organisms, including plants and animals.
“Any organism with a high-quality genome sequence – from a pure culture or not – can be named under the SeqCode,” said Hedlund. “We will also automatically accept all names formed under the ICNP. I expect through time that the SeqCode will be used much more frequently than the ICNP.”
Creating Clarity Amongst Chaos
One of the primary goals for the new system, authors argue, is to reverse a trend in the field where “unregulated” names are used in literature out of necessity. This can lead to mistakes that increase the likelihood of subsequent renaming later on, making it difficult for scientists to review and compare data and communicate effectively. Conversely, authors argue that the SeqCode “embraces findability, accessibility, interoperability, and reusability principles.”
Hedlund referenced Chlamydia and related organisms as an example. Since these organisms can’t be grown, stored, or distributed as pure cultures, they’re currently unable to be officially named.
“It could be pretty confusing for clinicians to not have valid names for newly discovered chlamydiae,” says Hedlund. “There’s a risk of those names being poorly cataloged, which could stifle tracking of disease outbreaks and communication among scientists, doctors, and the public.”
Overcoming Controversy
Despite its intended goal to create clarity and synergy with accepted standards for naming, the move is not without controversy.
The SeqCode follows a previous attempt by scientists to modify the ICNP to allow uncultivated prokaryotes to be named based on having a DNA sequence that would serve as the evidence (or ‘type’) for the organism – as opposed to the ICNP rules now which require a culture into two permanent collections.
In 2020, a team led by Desert Research Institute biologist Alison Murray published a paper, also in Nature Microbiology, that was co-authored or endorsed by nearly 120 scientists representing 22 countries calling for action on the proposed modifications of the ICNP to accept DNA sequences as types or to go an alternate route. However, the proposed modifications were rejected by the International Committee on Systematics of Prokaryotes, the group responsible for governing the naming of prokaryotes.
“It is clear that the global community of scientists is ready for a paradigm change in how we name prokaryotes – to be inclusive of the breadth of prokaryotic life,” said Murray. “Modern genome technologies can resolve genomes of uncultivated organisms at the high degree of precision needed to ensure integrity and provide stability to the field of microbiology. Naming these taxa is the way to communicate their existence, their evolutionary history and predict their physiological capabilities.”
The 2020 setback led to a redoubling of efforts among the growing cadre of scientists and, ultimately, the “alternative route” which led to the formation of the SeqCode.
“Many people came to the table to share their perspectives, their energy, and their skills to make it happen,” said Hedlund. “The response to our workshops from scientists all over the world was incredible and helped validate why the time has come to formally make a change in how prokaryotes are named.”
Tension still exists among some scientists, who argue that less can be known about uncultivated prokaryotes than those that can be grown and manipulated in a lab as pure cultures. Additionally, nuances in processing and interpreting DNA sequence data could potentially lead to erroneous conclusions, a point that Hedlund claims is also true of studies of pure cultures.
The authors say this new system is not intended to discourage traditional cultivation of prokaryotes, but instead is designed by the scientific community to improve communication across the microbial sciences.
“We view this ‘SeqCode v.1.0’ as a necessary first step toward a unified system of nomenclature to communicate the full diversity of prokaryotes and we will cooperate with the community toward the realization of this vision,” authors write.
More information:
The paper, “SeqCode: a nomenclatural code for prokaryotes described from sequence data” was published Sept. 19 in the journal Nature Microbiology. Learn more about the SeqCode at https://seqco.de/.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About UNLV
UNLV is a doctoral-degree-granting institution of more than 30,000 students and nearly 4,000 faculty and staff that has earned the nation’s highest recognition for both research and community engagement from the Carnegie Foundation for the Advancement of Teaching. UNLV offers a broad range of respected academic programs and is committed to recruiting and retaining top students and faculty, educating the region’s diverse population and workforce, driving economic activity, and creating an academic health center for Southern Nevada. Learn more at unlv.edu.
Sep 19, 2022 | Blog, Featured researchers
Restoring our relationship with hímu (willow) requires human interaction rather than protection
SEPT 19, 2022
RENO, NEV.
By Robin Smuda, Climate Reporter Intern
dá∙bal (dah-ball; big sage), ťá∙gɨm (tdah-goom; pinion pine), and hímu (him-oo; willow) are why Wá∙šiw (Washo) live here.
In between the high lush landscape of dáɁaw (Lake Tahoe) and the expanse of arid landscapes within the Great Basin, the Wá∙šiw have lived here and have lived with this community for countless generations. The continuation of life for the Wá∙šiw is based around plants that always stand: dá∙bal, ťá∙gɨm, and hímu. With them, survival is always possible, and they can help us understand our problems. But current viewpoints that prioritize protection over interaction with the environment are at odds with strong traditional relationships between the Wá∙šiw people and these plants.
Wá∙šiw traditional homelands (shown in light and dark green) are located in the mountains and valleys around dáɁaw (Lake Tahoe), along what is now the California-Nevada border. Today, most Wá∙šiw people live in colonies and communities of the Carson Valley of Nevada (shown in black).
Credit: Washoe Tribe of Nevada and California.
HÍMU IN WÁ∙ŠIW WEAVING
hímu, particularly the willow that grows in the valleys around the Lake Tahoe region (“valley hímu,” also known as coyote willow) is especially important to Wá∙šiw basket weaving for tradition and quality material. Baskets can be woven from most materials, but quality Wá∙šiw basketry wants and sometimes requires strong valley hímu for its strength and clean color.
Healthy valley hímu can grow long stalks independently, but human encouragement is the traditional way. Traditional growth patterns were propagated by planting hímu, pruning them, having fire consume or interact with them, shaping them to provide shade from hot sun-filled days, and more. The continued handling leads the plant to grow long and strong.
“My great aunts, the Smokey Sisters, and other elder basket weavers like Marie Kizer and Florine Conway, harvested and tended to the willow in Dresslerville along the river and surrounding areas,” said Melanie Smokey, Wá∙šiw basket weaver. “They would talk to the willow and were proud of this area. They graciously accepted visitors who asked to harvest willow in the area. Once everyone gathered their bounty, then they would all go to the Senior Center where a pre-planned good meal was served in honor of the guests. They were proud of their Wá∙šiw má∙š, their lands. Their baskets didn’t just hang on a wall, their baskets were used to gather, to sift pinenut and acorn flour in, and to cook in. They wanted basketry to continue so they taught and encouraged young people.”
Without the human touch, knots, bends, and eyes (from buds of branches) can become common. These become hindrances for collection of the long stalks that are necessary for a strong product and create weaknesses in the weaving.
Valley hímu has become the main variant of willow used for weaving, despite other types being readily available, because of the ability to grow tall and straight. These willows create the structure of the basket. hímu that grows in the mountains (“mountain hímu”) grows low and bunched, providing shorter stalks that make for weaker baskets, which last for one season at most.
Mountain hímu that grows in the Tahoe Basin has been used for fishing traps or twine, and temporary burden baskets, explained Smokey. The hímu in Northern Nevada’s arid low valleys is stronger, straighter, and necessary for complete and keepable baskets.
The long stalks of valley hímu create baskets of maximum strength that hold together under use of fire for roasting or carrying heavy objects for years. The feeling and fact of strength from valley hímu is most apparent in baby boards, which carry the next generation, make the child feel safe, and last for decades.
A ~100 year old Wá∙šiw hímu burden basket that was used over 2 lifetimes. Basket was on display as part of Wa She Shu It’ Deh at Meeks Bay, courtesy of Melba Rakow.
VALLEY HÍMU IN DECLINE: DROUGHT, HEAT, FIRE, AND MORE
Valley hímu on Wá∙šiw lands are under stress from drought and heat. hímu that is tall and healthy enough for weaving is practically nonexistent in the wild in Carson Valley, according to local weavers. Wá∙šiw weavers have harvested usable stalks in limited amounts from the Nature Conservancy preserve at River Fork Ranch in the Carson Valley, but finding quality hímu in other areas is so difficult that gatherers protect locations from many people out of respect, for the land is not a guarantee.
“…my cousin Sue goes clear to Oregon to get hers because this lady grows it for her in her yard,” says Melba Rakow, Wá∙šiw Elder and employee of the Culture and Language Resources Department of the Washoe Tribe of Nevada and California.
In addition to drought and heat, the unnaturally long and powerful fires from years of current forest management practices and climate change harm valley hímu as they tear through the landscape. hímu is burned down, damaged, or in some cases preemptively destroyed with herbicide as they are seen as an agricultural weed and potential fire hazard.
Changes in the timing of the warm season may also be impacting the timing of hímu flowering. Wá∙šiw weavers have noticed that the timing of flowering is becoming more unpredictable. Analysis of weather data by Paige Johnson and Kyle Bocinsky from the Native Climate team found that in Minden, Nev., the first warm spell of the year (measured as 7 consecutive days where the minimum daily temperature rose above 28oF) has been happening earlier in the year. Their data shows that the first warm spell is occurring about 2.8 days earlier every decade, which amounts to nearly 3 weeks over the last 70 years.
The earliest 7-day warm spells recorded each year at a weather station in Minden, Nev.
Credit: Paige Johnson and Kyle Bocinsky, Native Climate.
INTERACTION, NOT EXPLOITATION
Some of the problems facing Wá∙šiw today are the ability to restart traditional valley hímu growing practices and access to land, water, and money needed to propagate them. Many of the best areas for hímu growing are controlled by resource production and natural conservation mindsets. Most parks and natural areas in the Carson Valley are designed to keep nature in its pure state. Ranches that surround the Carson River and lusher areas of the Carson Valley are focused on livestock production and control large areas of land and water.
Working and living with the land gets us to a healthier environment, says Herman Filmore, Director of Culture/Language Resources Department of the Washoe Tribe of Nevada and California. The plants and land are sovereign beings, and we live with them, which includes human interaction and use. He explains that the idea of untamed wilderness Indigenous peoples lived in is detrimentally wrong. Plants were harvested and propagated on purpose. Landscapes were managed and areas were cleared. The difference is that human needs were not the only concerns.
Campsites were used and plants were cared for, but not always, as rest is important for the plants and the landscape, says Rakow. The overworking of land is something she has seen in her life. Ranchers in the Carson Valley used to have cattle graze one area and let that area heal for years before using the land again. Today, this is much less common.
Valley hímu growth near an unkept creek. Note that the majority of the branches are broken or twisted and unusable for weaving.
A RETURN TO TRADITIONAL WAYS
These are long-standing problems, but solutions are underway. For the first time in a generation, valley hímu is now being worked with on Wá∙šiw land in mass. It is a return and reimagining of what was done before. Rhiana Jones and the Washoe Tribe’s Environmental Department have been working on a pilot project to grow hímu that will be accessible to the whole community. She and others have propagated hímu stalks on the Dresslerville Reservation in the Carson Valley using traditional methods of fire and pruning to encourage great-quality stalks.
While efforts to have valley hímu in our community again are growing stronger, much still needs to be done in order to restore our relationship with this plant and the landscape as a whole. hímu faces many of the same challenges that we do — less water, intense heat, destruction of the environment, and out-of-control fire. They are resilient, as they always have been. It falls on people to become reconnected and move forward with them for generations to come.
Robin Smuda is a Wašiw person and a member of the Washoe Tribe of Nevada and California. Currently, they are a reporter intern with Native Climate at DRI and studying Cultural Anthropology at the University of Nevada, Reno. Robin is planning on studying Ethno-Archeology and Indigenous Studies in grad school, with a focus on the transition from pre- and post-contact in the Great Basin.
Jul 14, 2022 | Announcements, News releases
“Buen Aire Para Todos” project will create a new air quality monitoring system for Latinx community in East Las Vegas
July 14, 2022
LAS VEGAS, Nev.
Air Quality Monitoring
East Las Vegas
Buen Aire Para Todos
Above: Residential suburban neighborhood in Las Vegas, Nevada heading east from the Stratosphere.
Credit: cristianl, iStock.
Latinx communities in East Las Vegas will soon have access to an improved air quality monitoring program, thanks to a $300k grant from the Environmental Protection Agency (EPA) for a new project called Buen Aire Para Todos. This project will be led by ImpactNV with support from DRI, the City of Las Vegas, Make the Road Nevada, and the Las Vegas-Clark County Library District.
Residents of East Las Vegas (pop. 101,685) are disproportionally impacted by poor air quality and extreme heat, due to factors such as pollution from major highways, older homes without air conditioning, low access to personal vehicles, and low incomes (median household income $29,994). Buen Aire Para Todos will help to address some of the long-standing issues related to environmental justice and air quality in East Las Vegas, where approximately 65 percent of residents are Hispanic and many work in outdoor service jobs.
“ImpactNV is excited to lead this collaborative environmental justice grant for three important reasons,” said ImpactNV Director Lauren Boitel. “First, it showcases the strength of our organizations history of partnership and driving action for change in areas of need. Second, it provides a tangible example of how diverse sustainability is in its application, impact, and ability to improve the lives of all Nevadans. And finally, it elevates Nevada’s sustainability leadership nationally to be the recipient of such a competitive federal funding opportunity from the EPA.”
Buen Aire Para Todos will improve the air quality monitoring capabilities in East Las Vegas through the creation of a new air quality monitoring system made up of stationary and mobile outdoor sensors, as well as indoor sensors.
Ten stationary outdoor Purple Air sensors will be installed on public buildings, street lights, or other public areas. Ten mobile sensors will be placed on food carts and food trucks, in partnership with business-owners. And 20 indoor sensors will be placed in the residences of voluntary program participants, in association with a program to test the effectiveness of HVAC air filters.
These sensors will provide improved data on air quality for local residents, and allow the City of Las Vegas to access real time, high resolution data for one of the City’s most vulnerable neighborhoods.
“The project connects residents to science that directly impacts their lives,” said Associate Research Professor Derek Kauneckis, Ph.D., of DRI. “It develops a neighbor-level air quality monitoring grid where the community has control over the data.”
The project will also focus on expanding community awareness, education, and outreach to help residents better understand air quality measurements and health impacts of poor air quality and extreme heat. The project team will conduct community focus groups, organize educational outreach events, and share data with community members.
“Our membership of more than 10,000 consists primarily of immigrant, working families throughout East Las Vegas who have been shouldering the burden of confronting the negative impacts of a warming planet for years,” said State Director of Make the Road Nevada Leo Murieta. “It’s these directly impacted families who have been finding solutions to protect their loved ones day in and day out, so we are excited to work in partnership with our coalition to elevate these voices so we can create sustainable solutions for future generations of Nevadans.”
This project will begin in July 2022 and continue until June 2024.
Buen Aire Para Todos is a collaborative effort between nonprofit, academic, and public sector organizations in Southern Nevada who are united around the goal of developing solutions for cleaner air, better health, and reduced vulnerabilities to extreme heat. This project supports EPA’s Strategic Plan Goal of increasing transparency and public participation related to causes, effects, prevention, and control of air pollution.
“One of the priorities for the city of Las Vegas is to improve our residents’ quality of life,” said Las Vegas City Councilwoman Olivia Diaz. “Air pollution disproportionately affects low-income communities, like many of the Ward 3 families that live in my district. Ensuring better air quality is certainly a health issue that will benefit residents, especially children whose lungs are most vulnerable and are more likely to be hospitalized with respiratory issues. The city of Las Vegas is a leader in sustainable programming and I want to thank the EPA, ImpactNV and all the partners in the Buen Aire Para Todos project for their help in improving the quality of life for our residents.”
###
About ImpactNV
ImpactNV is Nevada’s social, economic and environmental sustainability alliance. Founded in 2008, ImpactNV has served as an independent nonprofit comprised of some of Nevada’s largest public and private entities and NGOs, including MGM Resorts International, Caesars Entertainment, Clark County, the City of Las Vegas, City of Reno and Dignity Health/Intermountain Healthcare. The goal of this alliance is to make Nevada and its communities more environmentally, economically and socially resilient and sustainable.
About Make the Road Nevada
Make The Road Nevada is a non-profit organization based in Las Vegas, Nevada. Our family of organizations hail from the east coast, where they have changed the face of community organizing in immigrant communities and become an immutable force for good. The states of New York, New Jersey, Connecticut, Pennsylvania all bear the fruits of our work, and it is time for Make The Road to make the difference in our communities in the west coast. Our vision for Nevada begins with building a strong grassroots foundation in Las Vegas and it ends with elevating the power of working class immigrant communities in every community around the state. We do this by informing, empowering, and mobilizing our community to take action on important issues that directly affect their families and loved ones.
About Las Vegas-Clark County Library District
The award-winning Las Vegas-Clark County Library District is an independent taxing entity that serves a diverse community across 8,000 square miles. Through its 25 branches and website, the Library District offers a collection of 3.2 million items consisting of books, movies, music (including streaming and downloadable), online resources, as well as free programs for all ages. The Library District is a vibrant and vital member of the community offering limitless learning; business and career advancement; government and social services support; and best of all, a place where customers find a sense of culture and community. For more information, and to support Library District programs, please visit LVCCLD.org.
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Media contacts:
Lauren Boitel
Executive Director, ImpactNV
Director@impact-nv.org
702-460-7047
Janette Mata
Communications Director, Make the Road Nevada
janette.mata@maketheroadnv.org
818-282-5223
Detra Page
Communications Manager, DRI
Detra.Page@dri.edu
702-862-5597
Margaret Kurtz
Public Information Office, City of Las Vegas
mkurtz@lasvegasnevada.gov
702-229-6993
Jul 8, 2022 | Blog, Featured researchers
Heading to the Mountains?
The Living Snow Project needs your help
JULY 8, 2022
RENO, NEV.
By Kelsey Fitzgerald
Living Snow Project
Snow Algae
Citizen Science
Featured research by DRI’s Alison Murray, Meghan Collins, Jaiden Christopher, Eric Lundin, and Sonia Nieminen.
On a cool and breezy morning in late spring, DRI Research Professor Alison Murray, Ph.D. and student intern Sonia Nieminen hiked up a ski slope at Mount Rose Ski Area, outside of Reno. The ground, wet from snowmelt, squished and squelched beneath their feet as they crossed a hillside of soggy grass to reach a remnant patch of late-season snow.
They were out to find snow algae – a type of freshwater algae that thrives in late-season snowpack. Although snow algae is best known for being pink, it actually comes in colors ranging from yellow to orange, light-green, brown, light pink, or a bright watermelon pink.
“There’s a whole microbial community that lives in the snow, and snow algae is the food source that gets it all started,” Murray explained. “They are a primary producer, so they bring organic carbon into the snow that feeds a diverse community of bacteria, fungi, protozoans and other multicellular animals. For example, little rotifers, tartigrades, mites, and spiders also call the snow ecosystem home.”
Alison Murray, Sonia Nieminen, and KOLO reporter John Macaluso look for snow algae among snow patches at Mount Rose, May 31, 2022.
Murray, Nieminen, Meghan Collins, Jaiden Christopher, and Eric Lundin at DRI are studying snow algae as part of the Living Snow Project (https://wp.wwu.edu/livingsnowproject/) – a collaboration between DRI and Robin Kodner and her team at Western Washington University. The project aims to learn more about the ecology, diversity, and prevalence of snow algae in the Cascade and Sierra Nevada mountains, with help from citizen scientists.
“The literature is pretty spotty on the biology of snow and snow algae,” Murray said. “A lot is known about just a few species of snow algae, but we want to see what else is out there, and learn more about the role that algae play in the snowpack in a changing climate.”
Alison Murray digs into a patch of light pink snow at Mount Rose Ski Area to collect a snow algae sample.
To collect a sample of snow algae, Murray and Nieminen first looked for patches of discolored snow. They dug down a few inches with a shovel, and then opened a sample collection kit – a pair of rubber gloves and a small plastic tube filled with a small amount of preservative. They used the lid of the tube to scoop some snow into the tube, then gave it a shake and sealed it. Finally, they recorded their location and sample number using the project’s smartphone app.
Top Left:
Participants in the Living Snow Project receive sample collection kits with specific instructions on how to collect a snow algae sample.
Top Right: Snow algae samples are collected using a plastic tube filled with a small amount of preservative.
Bottom: Sonia Nieminen collects a snow algae sample at Mount Rose Ski Area.
Just off the boardwalk at Tahoe Meadows, the team came across another patch of lightly pink pigmented snow and stopped to collect some samples. Snow algae spend the winter in the soil, Murray explained, and remain there until the wetness and light conditions of melting snowpack trigger the algae’s flagellated growth phase. The algae move to the top of the snowpack, where they develop sunscreen-like pigments that turn them shades of orange, pink, or deep red.
Top Left:
DRI scientist Alison Murray collects a snow algae sample at Tahoe Meadows.
Top Right: Sonia Nieminen collects a snow algae sample at Tahoe Meadows. Rubber gloves help to prevent the contamination of samples with any microbiota on the researcher’s hands.
Bottom: Samples tubes containing snow algae collected at Tahoe Meadows in Nevada during late spring 2022.
In the sample tubes, the snow samples appeared muted shades of brown, yellow, and light pink. But back in the laboratory at DRI, Eric Lundin placed the samples under a light microscope, and the red pigments became easier to see.
“The algae appear red due to astaxanthin, a pigment that protects snow algae from UV radiation,” Lundin explained.
Next, he examined the samples using fluorescence microscopy and DAPI staining. DAPI is a fluorescent dye that is attracted to DNA. Using fluorescence microscopy, the snow algae appear as red circular cells due to the autofluorescence of chlorophyll.
Finally, he looked at the samples using confocal microscopy, which uses specific wavelengths of light to induce fluorescence and shows the 3-D structure of the cells as a 2-D image. In these images, blue indicates the presence of DNA. Chlorophyll appears red, clearly showing the presence of snow algae. The snow algae cells are often coated with a layer of bacterial cells, and some debris too.
Top Left:
Snow algae cells (red) from the Mount Rose sites were identified in the laboratory using a light microscope. Pollen grains are large and appear to have two “ears” on either side of the main pollen particle, that helps the pollen grains get transported by the wind, they are often referred to as Mickey-Mouse shaped.
Top Right: Using fluorescence microscopy and DAPI staining to examine a sample, snow algae appear as red circular cells. Pollen grains, if the nucleus is still intact, emit blue light due to the presence of DNA. Other material seen in the image is a combination of bacteria, plants, dirt, and extracellular material.
Bottom: Snow algae, some of which are surrounded by bacterial cells (blue) as viewed with confocal microscopy. Blue indicates the presence of DNA, and red indicates presence of chlorophyll.
Want to participate in the Living Snow Project?
For the second year in a row, the group has put out a call to action to the outdoor recreation community for help tracking snow algae blooms, recording observations, and collecting samples of snow algae from backcountry areas during the late spring into the summer. By enlisting the help of volunteers, the research team is able to cover much more ground than they could alone.
“We appreciate the help of anyone who is out in the mountains in the early summer – hikers, summer skiers, or anyone else – who can help us collect samples or just use their phones to log locations where snow algae is found and how prevalent it is,” Murray said.
Are you heading to the mountains and interested in participating in the Living Snow Project? Instructions for how to participate are available on the Living Snow website: https://wp.wwu.edu/livingsnowproject/
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Apr 27, 2022 | Announcements, News releases
Genetics
Genetics Screening
Actionable Care Plans
Above: Graphic representation of the DNA sequence. In a recent study, Healthy Nevada Project scientists looked at the impact that notifying a patient of a positive finding for a CDC Tier 1 condition had on the care that the patient received in the months and years that followed.
Study Shows Importance of Ensuring Participant and Provider Follow-up After a Genetic Screening Result
New research from the Healthy Nevada Project® finds that a confirmed diagnosis does not always result in changes to patient care
Reno, Nev. (April 27, 2022) – Presenting individuals with potentially life-altering health information doesn’t mean the individuals – or their healthcare providers – will act on it. Follow-up education and conversations about actionable care plans with patients and their doctors are key next steps, according to new research from the Healthy Nevada Project.
The Healthy Nevada Project is a genetic screening and research project that launched in 2016 as a partnership between DRI and Renown Health. The project now has more than 50,000 participants, with genetic sequencing provided by Helix.
Between September 2018 and September 2020, the Healthy Nevada Project successfully notified 293 participants that they were genetically at risk for hereditary breast and ovarian cancer syndrome, Lynch syndrome, or familial hypercholesterolemia – three common genetic conditions known collectively as the Centers for Disease Control and Prevention (CDC) Tier 1 conditions. In a study published today in Frontiers in Genetics, Healthy Nevada Project scientists looked at the impact that notifying a patient of a positive finding for a CDC Tier 1 condition had on the care that the patient received in the months and years that followed.
According to their results, among the 293 Healthy Nevada Project participants who were notified of their genetic risk of a CDC Tier 1 condition, 71 percent of participants with electronic health records shared their findings with healthcare providers. However, only 30 percent of the electronic health records for these patients contained documentation of the genetic diagnosis, and only 10 percent of examined patients experienced a possible change in care after receiving the results of their genetic screening.
“The Healthy Nevada Project was implemented with a ‘hands-off’ approach where the participants receive their findings and decide with whom and when to share those findings. The findings were not automatically added to their electronic health records,” said Dr. Gai Elhanan, health data scientist at DRI and co-lead author of the study. “What we’re learning now is that to ensure that important genetic findings are integrated into the care journey it is important to make their inclusion into the electronic health records part of the study.”
This study builds on previous Healthy Nevada Project research published in Nature Medicine demonstrating the importance of screening for CDC Tier 1 conditions, which affect about one in 75 individuals and can be mitigated or even prevented from developing into disease when detected early. This study found that as many as 90 percent of the CDC Tier 1 cases are missed by clinical providers during normal clinical care screenings and examinations.
During the current study, the Healthy Nevada Project scientists found that 19 percent of studied participants had already developed one of the CDC Tier 1 conditions, and thus would have potentially benefited from earlier notification about their condition. The study team hopes that their findings will encourage individuals in Nevada to obtain genetic testing for these relatively common conditions. Even if individuals are older or have already suffered from diseases related to these conditions, testing could also prove beneficial to siblings, children, and grandchildren who may also be at risk and who could subsequently be screened in the event of a positive finding.
The study team also encourages informing health care providers of the importance of incorporating genetic diagnoses into the pharmaceutical (for example, for Familial Hypercholesterolemia) and treatment advice given to patients.
“As a result of this analysis, the clinicians at Renown Health and the Healthy Nevada Project researchers have made significant changes, including obtaining informed consent from participants to report positive findings from their genetics reports directly into their electronic medical record,” said Daniel Kiser, M.S., assistant research scientist of data science at DRI and co-lead author of the study. “This will help both participants, their clinical providers, and the whole state maximize the long-term benefits of the Healthy Nevada Project voluntary population-based genetic screening.”
Additional information:
The full text of the study, Incomplete Penetrance of Population-Based Genetic Screening Results in Electronic Health Record, is available from Frontiers in Genetics: https://www.frontiersin.org/articles/10.3389/fgene.2022.866169/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Genetics&id=866169.
This project was funded by Renown Health, the Renown Health Foundation, and the Nevada Governor’s Office of Economic Development. Study authors included Gai Elhanan (DRI), Daniel Kiser (DRI), Iva Neveux (DRI), Shaun Dabe (Renown Health), Alexander Bolze (Helix), William Metcalf (DRI), James Lu (Helix), and Joseph Grzymski (DRI/Renown Health).
For more information on the Healthy Nevada Project® or to request genetic screening, please visit: https://healthynv.org/
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About Renown Health
Renown Health is the region’s largest, locally governed, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.
About Helix
Helix is the leading population genomics and viral surveillance company operating at the intersection of clinical care, research, and data analytics. Helix enables health systems, life sciences companies, payers, and government partners to accelerate the integration of genomic data into patient care and public health decision making. Learn more at www.helix.com.
Mar 9, 2022 | News releases, Research findings
Childhood Trauma
Genetics
Obesity
Above: The logos for the Healthy Nevada Project, DRI, and Renown Health.
Childhood trauma and genetics linked to increased obesity risk
New study from the Healthy Nevada Project® shows strong influence of genes and environment on human health
Reno, Nev. (March 9, 2022) –New research from the Healthy Nevada Project® found associations between genetics, obesity, and childhood trauma, linking social health determinants, genetics, and disease. The study, which was published this week in Frontiers in Genetics, found that participants with specific genetic traits and who experience childhood traumas are more likely to suffer from adult obesity.
In 2016, DRI and Renown Health launched the Healthy Nevada Project®, the nation’s first community-based, population health study, which now has more than 60,000 participants. The project is a collaboration with personal genomics company, Helix, and combines genetic, environmental, social, and clinical data to address individual and community health needs with the goal of improving health across the state and the nation.
The new study focuses on Adverse Childhood Experiences (ACEs), which are traumatic and unsafe events that children endure by the age of 18. Over 16,000 participants in the Healthy Nevada Project® answered a mental health survey, and more than 65 percent of these individuals self-reported at least one ACE occurrence. These 16,000 participants were cross-referenced with their genetic makeup, and clinical Body Mass Index (BMI) measures.
According to the research team’s findings, study participants who had experienced one or more types of ACE were 1.5 times more likely to become obese adults. Participants who experienced four or more ACEs were more than twice as likely to become severely obese.
“Our analysis showed a steady increase in BMI for each ACE a person experienced, which indicates a very strong and significant association between the number of adverse childhood experiences and adult obesity,” said lead author Karen Schlauch, Ph.D., of DRI. “More importantly, participants’ BMI reacted even more strongly to the occurrence of ACEs when paired with certain mutations in several genes, one of which is strongly associated with schizophrenia.”
“We know that genetics affect disease in the Healthy Nevada Project® [https://pubmed.ncbi.nlm.nih.gov/31888951/], and now we are recognizing that ACEs also affect disease,” said Healthy Nevada Project® Principal Investigator Joseph Grzymski, Ph.D., of DRI and Renown Health. “Our new study shows that the combination of genes and environmental factors like ACEs, as well as many social determinants of health, can lead to more serious health outcomes than either variable alone. More broadly, this new work emphasizes how important it is for population genetic studies to consider the impact of social determinants on health outcomes.”
The study team believes that it is important for clinical caregivers to understand the strong impact that negative childhood experiences such as ACEs can have on both child and adult health. The researchers hope the information from this study will encourage doctors and nurses to conduct simple screenings for ACEs and consider a patient’s social environment and history in combination with genetics when developing treatment plans for better patient health.
According to the 2019 Youth Behavior Risk Survey (YRBS), 25.6 percent of Washoe County teenagers are overweight or obese. Obesity is a serious health concern for children and adolescents. According to the Centers for Disease Control and Prevention, obese children and adolescents are more likely to become obese as adults.
“Obese and overweight children and adolescents are at risk for multiple health problems during their youth, which are likely to be more severe as adults,” said Max J. Coppes, MD, PhD, MBA, FAAP, Nell J Redfield Chair of Pediatrics at the University of Nevada Reno School of Medicine, Physician in Chief of Renown Children’s Hospital. “Obese and overweight youth are more likely to have risk factors associated with cardiovascular diseases, such as high blood pressure, high cholesterol, and type 2 diabetes. Losing weight, in addition to a healthy diet, helps to prevent and control multiple chronic diseases and improves quality of life for a lifetime.”
“We’d like to thank all of the Healthy Nevada Project® participants who provided information to make our work possible,” said Robert Read, M.S., of DRI. “Our research illustrates that it’s not just genetics that cause disease, but that our environment and life experiences interact with our genes to impact our health in ways that we are only beginning to understand.”
Many thanks to Renown Health, the Stacie Mathewson Behavioral Health and Addiction Institute, and the Center for Genomic Medicine at DRI for supporting this significant work. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.
More information:
The full text of the study, The Impact of ACEs on BMI: An Investigation of the Genotype-Environment Effects of BMI, is available from Frontiers in Genetics: https://www.frontiersin.org/articles/10.3389/fgene.2022.816660/full
This project was funded by the Stacie Mathewson Behavioral Health and Addiction Institute, Renown Health, and the Renown Health Foundation. Study authors included Karen Schlauch (DRI), Robert Read (DRI), Iva Neveux (DRI), Bruce Lipp (DRI), Anthony Slonim (Renown Health), and Joseph Grzymski (DRI/Renown Health).
For more information on the Healthy Nevada Project®, please visit: https://healthynv.org/
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About Renown
Renown Health is the region’s largest, locally governed, not-for-profit integrated healthcare network serving Nevada, Lake Tahoe and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.
Media contacts:
Kelsey Fitzgerald, DRI
Senior Communications Official
775-741-0496
Kelsey.fitzgerald@dri.edu
Renown Public Relations
775-691-7308
news@renown.org
Mar 7, 2022 | Blog, Featured projects
Inspiring solutions: DRI’s Community Environmental Monitoring Program tracks radioactivity in Nevada’s air and water
March 7, 2022
LAS VEGAS, NV
By Kelsey Fitzgerald
CEMP
Radiation Monitoring
Citizen Science
Above: Community Environmental Monitoring Program (CEMP) Station on DRI’s campus in Las Vegas.
DRI’s Community Environmental Monitoring Program (CEMP) recently celebrated 40 years of radiation monitoring around the Nevada National Security Site, is one of the Institute’s longest-running programs – and its earliest citizen science success story.
Imagine this: You live in a Southern Nevada community located close to a historic nuclear testing site. You’ve heard stories from older relatives about watching mushroom clouds from atomic testing back in the 1950s and stories about “downwinders” in neighboring states who later developed cancer. Although nuclear testing stopped almost three decades ago, you can’t help but wonder about the unseen hazards that might be carried in the air on windy days. Or what might be slowly seeping into your drinking water.
For residents of communities surrounding the Nevada National Security Site (NNSS), these concerns are not imaginary — they are questions of everyday life. The NNSS, formerly the Nevada Test Site, was ground zero for more than 900 underground and atmospheric nuclear tests between 1951 and 1992. Today, the NNSS is used for a variety of missions related to national security rather than as a full-scale nuclear testing site, but public concern about exposure to harmful radiation lives on.
For more than 40 years, DRI’s Community Environmental Monitoring Program (CEMP) has worked to address fears about radiation exposure and provide answers to the concerned public in communities surrounding the NNSS through a simple but impactful solution: putting radioactivity data in the hands of the people.
Station Manager Don Curry checks the gages at the Community Environmental Monitoring Program Station on the DRI campus in Las Vegas. Curry has been part of the CEMP since 1991.
The CEMP: a brief history
Founded in 1981 as a collaborative effort involving DRI, the Environmental Protection Agency (EPA), and the Department of Energy (DOE), which funds the program through the National Nuclear Security Administration’s Nevada Field Office, the CEMP operates a network of 23 radiation and environmental monitoring stations spread throughout Southern Nevada, Utah, and California. Each station is staffed by pairs of local citizens who serve as points of contact for residents of their communities, and who are part of the official chain of custody for air filter samples they collect on a regular basis at the stations.
The program was born during a time when active nuclear testing was still going on at the NNSS. It was not long after the 1979 nuclear accident at Three Mile Island, and public distrust for the government was running high. In the aftermath of that accident, a group of local concerned citizens formed an independent monitoring network, which greatly improved public confidence in the monitoring process and results. Scientists from the DOE and EPA who had been deployed to assist with the monitoring of the Three Mile Island accident brought the idea back to Nevada, and the CEMP was born. By providing communities surrounding the NNSS with the tools to monitor radioactivity themselves and trusted community members to help interpret the data, the CEMP proved a powerful way to address citizens’ fears and concerns.
“I’m a huge proponent of giving the public a hands-on role that goes way above and beyond what the regulations might require,” said CEMP Project Director Ted Hartwell of DRI. “All of these stations are placed with the idea that we want them to be very publicly visible. A lot of them are at schools. One is at the post office in Beatty and one is at the post office in Tecopa. We have one at Southern Utah University in Cedar City and one at the BLM offices in Ely. The whole idea is that they’re visible, they’ll attract attention, and they’re staffed by trusted neighbors.”
In 1999, full technical operation of the CEMP was turned over from the EPA to DRI, and Hartwell took the helm as project director. Stations were upgraded to include meteorological instrumentation, and DRI scientist Greg McCurdy developed a program website, which for the first time allowed members of the public to access radioactivity and weather data in near real-time.
Today, DRI continues to administer the program, which employs a network of 46 Community Environmental Monitors (two per station) and 10 DRI scientists, staff members, and student interns who assist with various aspects of the program, including performing regular station maintenance, sample processing, website administration, and public outreach activities.
A dedicated volunteer base
Many program participants are new arrivals, but some have been with the CEMP for decades. The people of the CEMP, says Hartwell, are the true power behind the program. They are responsible for collecting data, and more importantly, they are the connecting force that relays the data back to their communities. About half of the program participants are science teachers, who are encouraged to include the information they learn from the program into their lessons.
Don Curry, age 83, is one of the program’s longest-serving participants – a CEMP station manager in Las Vegas for more than 30 years. He began with the program in 1991, not long after moving to Las Vegas to teach high school biology. For Curry, the CEMP provided an amazing opportunity to integrate real-world environmental data into the lessons that he did with his students.
“My students would go to the CEMP station to check on it; some took it on as their own class research projects and started communicating with other station managers in Utah and Nevada,” Curry said. “I used it in my environmental science classes to teach kids about radiation and how it affects the environment. We also worked with the EPA to develop an international radon testing network, where we collected samples from all over the world, and kids learned how to do radon testing themselves.”
The long-term impact of the program on his students was significant, Curry said.
“Anything that shows kids what a professional scientist does is astounding to them; it gives them a foot in the door. For a kid to see that they can have a career and get paid for working in science, that’s very cool. Having kids exposed to that is very important.”
Curry retired from teaching in 2009 but remains active as an AP biology tutor and visits his CEMP station several times per week. For Curry, some of the best parts about being a CEMP station manager have been the opportunity to participate in things that are happening at DRI and the tremendous amount he has learned about radiation issues.
Each summer, the CEMP organizes a workshop for program participants, in which prominent experts from the radiation research community are invited to speak on timely topics – for example, updates from Chernobyl or Fukushima. These are typically held in person, although the past two years’ workshops were held virtually due to COVID.
“The CEMP has been one of the highlights of my career because it has connected me to numerous things in many directions,” Curry said. “While I was teaching, it was one of the most important things I did all year. Now that I’m retired, I love having the CEMP as a small window into all of the things that are happening at the DRI campus.”
Station Manager Don Curry collects data at the Community Environmental Monitoring Program Station on the DRI campus in Las Vegas. Curry and a second CEMP team member visit the station three times per week.
Lessons learned
So, what has the CEMP learned over 40 years of radioactivity monitoring? For the most part, they’ve been able to show their communities that there’s nothing to be afraid of.
“This is a program that’s been around for a lot of years, but we’ve never seen anything that would be of concern to the general population,” said Don Newman, another long-time CEMP participant who began as a station manager in Cedar City, Utah in 1990.
CEMP data has helped dispel rumors and ease fears when accidents occur near the NNSS. Once, they were able to prove that a small test rocket that landed near Goldfield, Nevada was not nuclear-related. Another time, the data helped ease public concerns after an accident involving medical isotopes on the highway between Beatty and Goldfield.
The Fukushima nuclear accident in 2011 was a big moment for the program, Hartwell and Newman recall. The CEMP stations were the first to both detect and publicly report the detection of radionuclides from that accident in Japan here in Nevada.
“That was a pretty serious event, but it also really showed that our network was functioning as it should,” Hartwell said. “We were able to pick up these radionuclides of concern from a source several thousands of miles away, and yet we haven’t detected anything like that coming from the NNSS, which is just 75 or 100 miles up the road from Las Vegas, since full-scale testing ceased in 1992.
“Additionally, we were able to assist our local representatives in conveying accurate information to their communities to help them realize that, while we were certain that we were detecting radionuclides from an accident thousands of miles away, the exposure levels were thousands to millions of times less here in the United States than the ionizing radiation we’re exposed to 24/7 from the natural environment,” Hartwell added.
As time passes, public concern has shifted from the risk of airborne radiation to concern about what is in the groundwater, says Hartwell. About ten years ago, contaminants were detected in the groundwater outside the boundaries of the NNSS, but still a long way from public water sources.
The CEMP has performed water testing in the communities that are downgradient from the NNSS for decades, and works closely with Nye County, which operates a separate community-based water monitoring program, to convey the results of these studies to participants. At present, they have not detected any traces of contamination in the water, but if they do, their communities can rest assured that the CEMP monitors will be the first to let them know about it.
“It’s one of those programs where it goes along quietly for a long time, then there’s some event that CEMP participates in that really brings home the importance of the program,” said Hartwell.
More information:
For more information on the CEMP, please visit: https://cemp.dri.edu/. CEMP personnel are happy to provide presentations for classrooms, organizations or events. If you have a group interested in a presentation on the CEMP and the history of nuclear testing in Nevada, please contact Ted Hartwell (Ted.Hartwell@dri.edu) or place a presentation request through the project website: CEMP Presentation Request Form (dri.edu).
DRI faculty and staff who work on the CEMP program include: Ted Hartwell, Beverly Parker, Cheryl Collins, Greg McCurdy, Lynn Karr, John Goreham, Patriz Rivera, Pam Lacy, Rebekah Stevenson, and Sydney Wahls.
Feb 13, 2022 | News releases, Research findings
Baylor University paleoclimatologist analyzed gypsum- and quartz-dominated dune systems for possible fine, breathable dust fluxes detrimental to human health
Above: Mark Sweeney and Eric McDonald set up measurements of PI-SWERL at White Sands National Park. Credit: Baylor University.
Reportsed from Baylor University: https://www.baylor.edu/mediacommunications/news.php?action=story&story=226267
WACO, Texas – A recent National Science Foundation funded study that included Baylor University paleoclimatologist Steven L. Forman, Ph.D., professor of geosciences, evaluates current and future dust sources in central North America with consideration for climate change. These fine dust fluxes are detrimental to asthmatic and general cardio-pulmonary health for populations downwind, particularly areas of west Texas and New Mexico that have large areas of significant dust sources with dry and drought conditions in the past decade.
The study, published in Geology, seeks to characterize dust emission potential from landforms in two end-member eolian systems, where wind is the primary source of sediment transport: the White Sands dune field in New Mexico and the Monahans dune field in west Texas. The study’s lead author is Mark Sweeney, Ph.D., University of South Dakota. Eric McDonald, Desert Research Institute, joined Sweeney and Forman on the research team.
The White Sands dune field is composed of gypsum and a hot spot for dust emissions because the dunes and adjacent playa yield high dust fluxes. However, the active Monahans dune field is composed of quartz and produce low dust fluxes. Adjacent to Monahans, stabilized sand sheets and dunes that contain silt and clay could produce high dust fluxes if reactivated by climate change or anthropogenic disturbance.
“We chose these sites because the gypsum dunes and playa lake environments should be hot spots for dust emission, and the Monahans composed of mostly pure quartz grains should be a low dust emission system. We were wrong about the Monahans,” Forman said.
Field- and model-based estimates of dust emissions from dune systems are difficult to characterize. By considering whole eolian systems — active and stabilized dunes, interdunes, sand sheets and playas — dust emissions can be more accurately estimated for estimating current and future atmospheric dust loading. Atmospheric dust has impacts on radiative forcing, biogeochemical cycles, extreme climate variability and human health.
The researchers utilized a Portable In Situ Wind Erosion Laboratory (PI-SWERL) to measure the dust emission potential in the field. The PI-SWERL, which was developed by a team from DRI, is a circular wind-erosion device, measures concentrations of inhalant particulate matter at different friction velocities from soil surfaces.
“The PI-SWERL is wind tunnel wrapped into a circle which makes this novel technology portable,” Forman said. “Thus, we can quantify the winds speeds and forces necessary to loft small, breathable particle sizes that at certain elevated concentrations induce an asthmatic response and heightened risk of pulmonary mortality and morbidity.”
The PI-SWERL measurements showed considerable differences in the dust emission potential across both systems. Active dunes, sand sheets and interdunes at White Sands generated similarly high dust fluxes. Comparatively, the playa had the widest range of fluxes with the lowest fluxes on moist or hard surfaces and the highest where loose sand and aggregates were at the surface.
In contrast, the Monahans active quartz dunes generated low dust fluxes. However, dry crusted interdunes with loose sand at the surface had much higher fluxes. Dust emissions increase exponentially with rising wind friction velocities for both systems, often associated with common winds 10 to 15 mph.
The results revealed intra- and extra-landform variability in dust fluxes from eolian systems, mostly due to the degree of surface crusting or soil moisture. More dust occurs on surfaces with loose sand or aggregates where saltation bombardment, when wind lifts particles and causes them to hit along the surface with increased velocity, could erode playas or interdunes and aggregates could break apart to create more dust.
Surprisingly, White Sands showed high magnitudes of dust emission from the abrasion of dune sand and erosion of playa sediments, indicating both landforms are particulate sources during dust storms. The Monahans system produced low dust emissions due to low rates of abrasion in active dunes and vegetative cover, which protects the surface from wind erosion. However, the most common landforms — sand sheets that surround the dune fields for miles — are rich sources for fine breathable particles, at the same magnitude as White Sands.
“The most surprising results was variability in dust emissivity for White Sands landforms and the very high dust flux from the flat sand sheet area that covers most surfaces in west Texas. There is a hidden dust source in these deposits and soils, which were unrecognized,” Forman said.
Dust emission assessments are important to current and future climate modeling. Wind-dominated and drought-sensitive systems could see stabilized dunes and sand sheets become reactivated, or adjacent playas may increase emissions. Potential atmospheric dust loading can occur from diverse landforms in active and presently stabilized eolian systems.
“Atmospheric dust concentrations are important for the global heat-balance and locally can lead to a thermal-blanking effect raising local temperatures. Recent studies associate ozone degradation with elevated dust concentrations high in the atmosphere,” Forman said. “As our planet warms from increasing greenhouse gases many deserts will expand, and grassland areas like on the Southern High Plains will diminish, revealing a limitless supply of dust that will worsen aridity and is detrimental to human health. Understanding the land surface response to climate warming is critical for future sustainability.”
###
About Baylor University
Baylor University is a private Christian University and a nationally ranked Research 1 institution. The University provides a vibrant campus community for more than 20,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest continually operating University in Texas. Located in Waco, Baylor welcomes students from all 50 states and more than 90 countries to study a broad range of degrees among its 12 nationally recognized academic divisions.
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Jan 20, 2022 | Blog, Featured projects
Seeking answers from the ashes
January 20, 2022
RENO, NEV.
By Kelsey Fitzgerald
Above: A soil collection field site located within the perimeter of Dixie fire. November 18, 2021.
DRI scientists study soil dynamics in the wake of Sierra Nevada wildfires
After a wildfire, soils in burned areas become temporarily water-repellent, resulting in increased risk of flooding and erosion in the months that follow. Scientists and land managers have never thoroughly understood why or how this happens – but when last summer’s Dixie, Tamarack, and Caldor fires burned through the Sierra Nevada in close proximity to DRI’s Reno campus, scientists Brad Sion, Ph.D., Vera Samburova, Ph.D., and Markus Berli, Ph.D., jumped into action.
The team, led by Sion, obtained a Rapid Response Research grant from the National Science Foundation for a new project aimed at exploring the impacts of wildfires on physical and chemical properties of burned soils.
Above, left: Brad Sion, Ph.D., Assistant Research Professor of Geomorphology, holds a frozen chunk of burned soil at a soil sample collection site near Kirkwood in the wake of the Tamarack Fire.
Above, right: Vera Samburova, Ph.D., inspects soils in a burned area near Frenchman Lake that was affected by the Beckwourth Complex Fire.
To collect soil samples before the burned areas were impacted by rain or snowfall, time was of the essence. In October, the team made several trips to nearby fire sites to collect soil samples and to conduct field measurements of soil water repellency.
Then, in late October, a major atmospheric river storm came through. The team’s next visit to the fire sites revealed a changed landscape – a real-world example of how wildfires and water repellent soils can impact ecosystems and infrastructure.
“When we first went out into the field, the sites were very dry and ash-covered,” said Samburova. “When we went back out after the atmospheric river storm, we saw lots of mudslides along the roads, and even dirt on top of the road in some places. The soil was very mushy at the surface, but bone dry within centimeters below. And a lot of water was staying on the surface. It was hard to walk on – very slippery.”
Above, left: The results of a water droplet penetration test on burned soils at the Dixie fire show a high degree of soil water repellency.
Above, right: After a late October atmospheric river storm passed through the region, researchers observed erosion and mudslides field sites at the Dixie fire.
An interdisciplinary approach
Although previous studies have examined impacts of fire on soils in a controlled laboratory setting, the new DRI study will be one of the first to investigate changes in soil properties and their interrelationships using samples collected directly from freshly burned forests. This work builds upon earlier research by co-investigators Samburova and Berli, which investigated the impacts of fire smoke on water repellency of sand samples.
The team, which includes experts from all three of DRI’s research divisions, is approaching their research questions from several angles. Sion is leading the effort to measure the hydraulic (water-related) and thermal (heat-related) properties of burned soils. Samburova is analyzing organic compounds found in the burned soil samples, and Berli is conducting tests to assess the degree of soil water repellency.
Together, their results will provide new insight into linkages between fire burn severity, changes in soil thermal and hydraulic properties, and more.
“Our goal is to understand from a basic science perspective, what the cause is for these various soil characteristics pre- and post- fire,” said Sion. “If we can look at different fire conditions and the soil conditions that result, then we can say something about how a soil may respond in the future, and eventually that information can be extrapolated to different landscape settings.”
At present, the researchers have completed sample collection and are analyzing samples in their respective laboratories in Reno and Las Vegas. They plan to return to their field sites next fall to see how the soil water repellency changes over time.
As climate warms and western wildfire activity increases, Sion and his colleagues believe that understanding how forest fires impact soil properties will continue to be a topic of growing importance.
“Climate change and wildfires are not problems that are unique to the Sierras,” Sion said. “Whether you’re in the Pacific Northwest, Canada, Alaska, or elsewhere, you’re seeing increases in fire activity. People are thinking about the landscape responses and what they mean.”
Diana Brown, Staff Research Scientist of Geomorphology, analyzes samples in the Soil Characterization and Quaternary Pedology laboratory in Reno. The soil samples have been saturated with water and contain tensiometers and heat probes to analyze hydraulic and thermal properties of the soil.
Funding for this study is provided by the National Science Foundation (award # 2154013). Additional DRI scientists participating in this project include Hans Moosmüller, Ph.D., Diana Brown, M.S., Chris Baish, M.S., Janelle Bustarde, Palina Bahdanovich, Shelby Inouye, Adam Hackbarth, Zimri Mena and Kendrick Seeber.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Jan 13, 2022 | Announcements, News releases
“Native Climate” project will build relationships and narrow the climate justice gap in Native American communities of the Intermountain West
Above: The new Native Climate project will work to support climate resilience planning in Indian Country. Greenhouses at Salish Kootenai College (upper left), Grey Farrell near Tuba City on the Navajo Reservation (upper right), Pyramid Lake (lower right), a schoolbus on the Navajo Reservation near Tuba City (lower left). Credit: Maureen McCarthy/DRI
Reno, Nev. (Jan 13, 2022) – A collaborative team of researchers led by Maureen McCarthy, Ph.D. of DRI has received a $1.5 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture (USDA-NIFA) to support and strengthen the role of USDA Climate Hubs in Indian Country.
The USDA Climate Hubs work across ten regions of the U.S. to support agricultural producers and professionals by providing science-based, region-specific information about climate change and climate adaptation strategies. The new DRI-led project, titled “Native Climate: Strengthening the role of Climate Hubs in Indian Country,” will support the Climate Hubs by expanding the reach of their services and outreach to Tribal Extension agents, agricultural producers, and youth educators in the Southwest and Northern Plains regions.
“From heatwaves to extreme winds, droughts, wildfires, and floods, the climate crisis poses huge adaptation challenges to Native American communities in the Intermountain West – and there are huge inequities across the U.S. in providing climate services and resources to Tribes,” said McCarthy, Native Climate program director from DRI. “Many of these communities are incredibly resilient and forward-thinking in terms of finding ways to adapt to this rapidly warming world, and their knowledge of the landscape pre-dates modern science. This project is an amazing opportunity to build connections and sustainable, trusted relationships that support information sharing between Tribal communities, Climate Hubs, Tribal Extension partners, researchers, and educators.”
Native Climate will address long-standing issues related to climate injustice in Indian Country through culturally-appropriate information sharing and by increasing the representation of Native American Tribal members in climate-related research and outreach positions. The project team includes researchers, Tribal Extension educators, and Climate Hub leaders from DRI, the University of Nevada, Reno Extension, University of Arizona, University of Montana (UM), and the Southwest and Northern Plains Climate Hubs.
The project supports the hiring of several Native Climate Fellows, who will work directly with the Southwest and Northern Plains Climate Hubs in coordinating climate data needs, extending outreach to agricultural producers, and sharing youth climate education materials. One Native Climate Data Fellow will be stationed in the Montana Climate Office (MCO) at UM. A second Native Climate Agricultural Producer Fellow will work through UNR-Extension, and a third Native Climate Youth Education Fellow will be hired by DRI.
DRI’s Native Climate Youth Education Fellow will work with mentor Meghan Collins, M.S., to continue growing an existing Teaching Native Waters Community of Practice, which fosters communication between educators, FRTEP agents, and scientists. This Fellow will also work with the Climate Hubs and other NIFA project teams to adapt climate education resources to be place-based and culturally relevant.
“Educators, scientists, decision-makers, and leaders all have important knowledge to bring to the table,” said Collins, assistant research scientist at DRI. “This community of practice creates spaces for us to listen, respond, and innovate. Together, we are seeking solutions that engage youth in closing the gap in climate justice.”
The project will also create a new student internship program for Native Climate Reporters at DRI, which will support three or more Native students a year studying communications, journalism, agriculture or STEM. The interns will report on stories about climate impacts and adaptation by tribes in their regions, and gain experience developing and producing multi-media communications, with mentorship from Native Climate Communications Coordinator Kelsey Fitzgerald, M.A.
“Only a very small percentage of journalists at U.S. news organizations are Native people, which has a huge impact on the news coverage we see or don’t see about climate change and other challenges being addressed by Tribal communities,” said Fitzgerald, senior communications official at DRI. “We are so excited to be able to provide this opportunity for Native students interested in climate reporting to develop their communications experience and skills, so that they can play an active role in providing more accurate news coverage and telling the stories that are important to their regions.”
Other components of the project include a “Native Climate Toolkit” – a web-based interactive resource clearinghouse, and impact reporting and alert tools. A Native Climate Advisory Group will help the team engage tribes in the region, leverage resources from partner organizations, and conduct culturally-respectful project evaluation.
Native Climate builds on partnerships established under previous USDA-funded projects Native Waters on Arid Lands (nativewaters-aridlands.com), the COVID CARE Toolkit Project, All Climate is Local virtual conference, and Teaching Native Waters. Native Climate will begin in March 2022 and run through March 2027.
More information:
To view the full award announcement from USDA, please visit: https://www.usda.gov/media/press-releases/2022/01/12/usda-invests-9m-expand-reach-and-increase-adoption-climate-smart
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Jan 3, 2022 | News releases
NASA grant funds research for sunscreen on Mars
December 30, 2021
RENO, NEV.
By Michelle Werdann, UNR
Above: Vulpinic acid sits on a lab bench next to several lichen species.
High radiation on Mars is one of the many reasons the Red Planet seems inhospitable. Two chemistry professors from the University are using solutions from early Earth to solve that problem on Mars.
Reposted from University of Nevada, Reno – https://www.unr.edu/nevada-today/news/2021/sunscreen-for-mars
What do a fungus, a bacterium and an astronaut all have in common? They all need protection from ultraviolet radiation, especially if they’re living on Mars. Researchers at the University of Nevada, Reno in collaboration with Henry Sun of the Desert Research Institute and Christopher McKay of the NASA Ames Research Center received a NASA Established Program to Stimulate Competitive Research (EPSCoR) seed grant to study how they can mimic biology to make some powerful sunscreen.
Serious sunscreen
Lichens are the colorful green moss-like growths found on rocks and trees throughout the Sierras (in fact, Tanzil Mahmud, a graduate student working on this project, went on a hike in Oregon and collected some lichen for the lab). While they appear to be a single organism, lichens are the result of a symbiotic relationship between bacteria and fungi forming a composite organism. Ultraviolet radiation can be harmful to plants if it’s too energetic, so these uniquely bonded organisms evolved a “sunscreen” to protect themselves.
The “sunscreen” is a pigment that is produced by either the bacteria or the fungi. Different species evolved the pigment on their own, suggesting that they were vital to survival in early Earth’s atmosphere. The researchers hypothesize that the absorbed radiation is dissipated in the pigment and transferred into vibrational energy, which dissipates to the environment as heat.
Tanzil Mahmud is a graduate student in Christopher Jeffrey’s lab. He is shown holding a lichen he collected for the lab on a hiking trip in Oregon.
Billions of years ago, when Earth’s atmosphere wasn’t as protective as it is now, cyanobacteria had to protect themselves from intense ultraviolet radiation—the same radiation astronauts would be exposed to on Mars. The bacteria evolved pigments that absorbed that harsh radiation and protected the cells. It is believed that these bacteria also photosynthesized and produced oxygen, thus building the ozone layer, which now protects us from the sun’s harsh radiation.
The idea of microbial sunscreens came from Sun. Sun is a molecular microbiologist and an expert on life found in extremely harsh conditions. He noticed the lichen in places like Florida or the Amazon have very green coloration, but that lichens in the desert have different colors. This led Sun to wonder what the pigments did for the lichen.
“The pigment is only in the outer layer. I came to the realization that the pigment has nothing to do with photosynthesis. It must be related to shielding the UV,” Sun said. That’s when he reached out to Matthew Tucker, an associate professor in the Department of Chemistry. Tucker suggested he and Sun meet with associate professor Christopher Jeffrey, also from the Department of Chemistry, and Sun’s curiosity about the pigment spread quickly. The researchers started to design an experiment to determine if and how the pigments evolved to shield the lichen from the sun’s radiation.
Harvesting compounds…then blasting them with radiation
Jeffrey studies the diversity of secondary metabolites, which can perform many different functions in an organism and are often very specific to a species. And as Jeffrey emphasizes, they’re not secondary because they’re unimportant. Using synthetic chemistry and analytical tools, Jeffrey studies secondary metabolites, such as the pigments, with the goal of understanding their relationship to other molecules and to the organism itself.
Jeffrey holds a vial of vulpinic acid isolated from lupus litharium, or Wolf lichen. Wolf lichen is found in Nevada, and the sample they isolated the vulpinic acid from was collected on a camping trip at Yuba Pass. The yield for the pigment is relatively high because five percent of the lichen’s mass is composed of the pigment.
Jeffrey’s research will focus on isolating the pigments from the lichen and using synthetic chemistry techniques to produce larger quantities of the pigments, because harvesting them from the lichen doesn’t necessarily produce a high yield of pigment. Then comes the matter of making sure the pigments will hold up to intense energy. That’s where Tucker’s lab comes in.
Tucker’s lab specializes in femtosecond laser spectrometry. A femtosecond is a millionth of a billionth of a second, and ultra-fast lasers can work like cameras with a shutter speed that can catch molecular movement and energy flow at that tiny time scale.
“I’m interested in understanding structural dynamics and the relationships to biological systems using laser spectroscopy,” said Tucker. He studies how energy can flow in an environment, or in this case, within the pigments and their environment.
Once in Tucker’s lab, the pigments will be placed in the path of a laser that is guided by a series of mirrors that will allow the researchers to determine exactly when the laser hits the pigment, which happens at the speed of light. The equipment in Tucker’s lab is precise enough to account for the time difference generated by the mirrors. The laser beam will strike the pigment, but instead of letting the light through, the pigment will dissipate that energy.
The laser beam in Tucker’s lab is powerful enough to burn your finger.
The evolution of the pigments to work as they do is impressive. The pigments prevent unfavorable chemical reactions from happening inside the cells that result from the absorption of ultraviolet light. Instead, the pigments dissipate the energy quickly and a most safe and effective way.
Utilizing their findings, researchers hope to develop a supplement that can be consumed by astronauts that will give them the same protective effects that the lichens have, like a sunscreen that protects you from the inside.
“And now, once you have this protection sorted out, you can engineer plant life in that way, now you can start to grow plant life on Mars. You can generate some ozone possibilities and ultimately you don’t need all that UV protection,” Tucker said.
Sun said the bacteria have moved a lethal problem (the radiation) to a manageable chemical problem (oxidation), but that because the bacteria have to deal with the oxidation, they may contain useful antioxidants that can be synthesized in labs like Jeffrey’s.
Other applications of these pigments might be more commercial, such as a deck paint that withstands sun exposure for longer periods of time.
Researchers also hope to understand the structure of the sheath that contains the pigments. Typically, these carbohydrate sheaths are water-soluble, but the pigments don’t wash away when it rains on the lichen. Sun says this indicates the sheath is a “chemically perfect scaffold” for the pigment.
Early Earth organisms like cyanobacteria are useful analogs for organisms surviving in harsh environments. Different organisms have solved the radiation problem in the same way.
“There may not be life on Mars, but it’s not because of the radiation,” Sun said. “If other conditions are conducive to life, the radiation would be an easy problem to solve.”
Spanning the disciplines
As these symbiotic lichens demonstrate, working together can lead to a beautiful thing, and Tucker is no stranger to that idea. He is currently a co-principal investigator working with other faculty on two large Department of Energy projects for $2.5 million and $2.6 million.
“These collaborations are essential for the project’s success and show how unselfish cooperativity amongst the sciences benefits everyone,” Associate Dean of the College of Science Vince Catalano said.
This research is an intersection of biology, chemistry and physics, which is right up Jeffrey’s alley. As a researcher in the Hitchcock Center for Chemical Ecology, Jeffrey knows how important it can be to reach across the discipline divide. The Hitchcock Center for Chemical Ecology is a program at the University funded by Mick Hitchcock, who developed a groundbreaking treatment for HIV. The program is rooted in interdisciplinary research, particularly between biology, ecology and chemistry. Sun also emphasized the importance of working across fields.
“I’m not a chemist,” Sun said. “So, like the lichen this partnership is mutually beneficial.”
“NASA relies heavily on outside scientists to define the science goal of missions and to analyze the data and put the results in the broad scientific context,” said McKay. “Because missions are interdisciplinary (they usually involve several instruments and several science objectives) the interdisciplinary projects are very important to this process.”
The purpose of the NASA ESPSCoR grant is to bring a wider range of fields into aerospace research activities and apply those fields. Jeffrey has partnered with faculty at Nevada State College (NSC) to develop an interdisciplinary STEM internship program that will bring NSC students to the University campus. This summer internship program will allow those students to gain real research experience in chemistry, biology and physics.
“With the undergraduate interns they get exposure to how the sciences work together, which is important for job and workforce development,” Jeffrey said.
The research team is also focused on producing a short documentary.
“The goal of the documentary is to engage the public that way, because they might see the outcome of science, or the outcome of sending something to the Moon, but often they don’t see how it really takes a huge multi-disciplinary group to not only have their expertise in their sciences, but see the pathway that unites all of those together, and figure out how to work with each other to deliver an outcome,” Tucker said.
“We want to train students to think broadly,” Sun said. “We’re led to a narrow path of thinking. That’s the reason, I think, this interdisciplinary idea has merit.”
Dec 7, 2021 | Blog, Featured researchers
Meet Charlotte van der Nagel, Graduate Researcher
DECEMBER 6, 2021
LAS VEGAS, NEV.
Geoscience
Ecohydrology
Ecosystem Sciences
Above: Charlotte van der Nagel during sunrise at Reflection Canyon, Utah.
Credit: Charlotte van der Nagel.
Charlotte van der Nagel is a graduate research assistant with the Division of Earth and Ecosystems Sciences at DRI in Las Vegas and a Ph.D. student in the Geoscience program at University of Nevada, Las Vegas. Learn more about Charlotte and her graduate research in this interview with DRI’s Behind the Science blog!
DRI: What brought you to DRI?
van der Nagel: I am originally from the Netherlands. I worked with Dr. Henry Sun at DRI for half a year in 2020 as part of the research for my master’s thesis. This time allowed me to get to know DRI – and Nevada as a whole – and I sure liked it a lot! So, when a Ph.D. position became available that continued the research I had already started the year before, I didn’t doubt for a single second and applied for it, which brought me back to DRI and Las Vegas in August 2021.
DRI: What are you studying?
van der Nagel: The main focus of my study is ecohydrology. This discipline focuses on the interaction between water and ecology. I am particularly interested in how the desert ecosystem can support life with such limited water availability.
Charlotte van der Nagel in the field digging a hole to bury multiple TDR sensors to monitor soil moisture distribution over depth and time in Arrow Canyon near Moapa, NV.
Credit: Charlotte van der Nagel.
DRI: What research projects are you working on? And who at DRI are you working with?
van der Nagel: I work with my Ph.D. advisor Dr. Henry Sun. My main project is a study that focuses on the occurrence of barren circles of on average 13ft in diameter, surrounding a central ant nest. These circles are found throughout most of the western U.S. and are even visible from satellite images. Ants keep the circles barren by cutting down any seedling that wants to establish inside of the circle, yet ants depend on these plants for their food source. By keeping the circle barren, the ants take away their nearest food source, which does not make sense from a biological viewpoint. In this study, we will try to find the driving force for ants to display this disk clearing behavior.
Another project I recently started working on involves regional die-back of Screwbean Mesquite trees. As these trees are of high ecological significance, there is a lot of interest from different agencies to study the die-back and find possible causes to explain and possibly revert this die-back. For this study, I will be looking at soil moisture conditions, N15 and O18 isotopes of the trees, and sulfide concentrations and redox conditions in the groundwater.
Charlotte van der Nagel is working with her advisor, Dr. Henry Sun, to study ants nests found within barren circles in the Great Basin and other western ecosystems. Ants keep the circle barren by cutting down vegetation that grows inside the circle, but scientists do not yet understand the reason for this behavior.
Credit: Charlotte van der Nagel.
DRI: What are your short-term and long-term goals while at DRI?
van der Nagel: As I just started my Ph.D. program a couple of months ago, my short-term goal would be to get both my projects up and running, so that I will start getting results in. In the meantime, I am planning on learning as much as I can about the various topics my research includes.
In the long-term, I want to engage in more cross-disciplinary research. Often, a research problem is not easily classified as one field of work. For example, my ant circle study requires not only knowledge of hydrology, but also of ecology and biology. If you exclusively look at one of those disciplinaries, you will inevitably miss a lot of potentially important findings in the other fields. I therefore want to extend my area of focus and I feel like DRI would be a great place for this.
DRI: Tell us about yourself. What do you do for fun?
van der Nagel: Coming from a country that is flat and very densely populated, I love spending all my free time out of the city, enjoying the vastness of the desert. You can find me every weekend out hiking, climbing, camping, kayaking or off-roading – the more remote, the better. I really like that Las Vegas is close to so many great national parks and try to make every weekend into an adventure. One of the most amazing things I have done so far was driving 2 hours on a rough off-road, then hiking 10 miles with a heavy backpack to camp on the edge of Reflection Canyon, Utah. The most rewarding hike I have ever done!
Charlotte van der Nagel hiking Angels Landing in Zion National Park, Utah.
Credit: Charlotte van der Nagel.
Nov 22, 2021 | News releases, Research findings
Within an Antarctic Sea Squirt, Scientists Discover a Bacterial Species With Promising Anti-Melanoma Properties
December 1, 2021
RENO, NEV.
By Kelsey Fitzgerald
Antarctic Sea Squirt
Melanoma
Health
Above: Late spring at Arthur Harbor. The waters surrounding Anvers Island, Antarctica, are home to a species of sea squirt called Synoicum adareanum. New research has traced the production of palmerolide A, a key compound with anti-melanoma properties, to a member of this sea squirt’s microbiome.
Credit: Alison E. Murray, DRI
New study brings important advances for Antarctic science and natural products chemistry
There are few places farther from your medicine cabinet than the tissues of an ascidian, or “sea squirt,” on the icy Antarctic sea floor – but this is precisely where scientists are looking to find a new treatment for melanoma, one of the most dangerous types of skin cancer.
In a new paper that was published today in mSphere, a research team from DRI, Los Alamos National Laboratory (LANL), and the University of South Florida (USF) made strides toward their goal, successfully tracing a naturally-produced melanoma-fighting compound called “palmerolide A” to its source: a microbe that resides within Synoicum adareanum, a species of ascidian common to the waters of Antarctica’s Anvers Island archipelago.
“We have long suspected that palmerolide A was produced by one of the many types of bacteria that live within this ascidian host species, S. adareanum,” explained lead author Alison Murray, Ph.D., research professor of biology at DRI. “Now, we have actually been able to identify the specific microbe that produces this compound, which is a huge step forward toward developing a naturally-derived treatment for melanoma.”
Synoicum adareanum in 80 feet of water at Bonaparte Point, Antarctica. New research has traced the production of palmerolide A, a key compound with anti-melanoma properties, to a suite of genes coded in the genome by a member of this sea squirt’s microbiome.
Credit: Bill J. Baker, University of South Florida.
The full study, Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with anti-melanoma palmerolide biosynthetic potential, is available from mSphere.
The bacterium that the team identified is a member of a new and previously unstudied genus, Candidatus Synoicihabitans palmerolidicus. This advance in knowledge builds on what Murray and her colleagues have learned across more than a decade of research on palmerolide A and its association with the microbiome (collective suite of microbes and their genomes) of the host ascidian, S. adareanum.
In 2008, Murray worked with Bill Baker, Ph.D., professor of chemistry at USF and Christian Riesenfeld, Ph.D., postdoctoral researcher at DRI to publish a study on the microbial diversity of a single S. adareanum organism. In 2020, the team expanded to include additional researchers from LANL, USF, and the Université de Nantes, and published new work identifying the “core microbiome” of S. adareanum – a common suite of 21 bacterial species that were present across 63 different samples of S. adareanum collected from around the Anvers Island archipelago.
In the team’s latest research, they looked more closely at the core microbiome members identified in their 2020 paper to determine which of the 21 types of bacteria were responsible for the production of palmerolide A. They conducted several rounds of environmental genome sequencing, followed by automated and manual assembly, gene mining, and phylogenomic analyses, which resulted in the identification of the biosynthetic gene cluster and palmerolide A-producing organism.
“This is the first time that we’ve matched an Antarctic natural product to the genetic machinery that is responsible for its biosynthesis,” Murray said. “As an anti-cancer therapeutic, we can’t just go to Antarctica and harvest these sea squirts en masse, but now that we understand the underlying genetic machinery, it opens the door for us to find a biotechnological solution to produce this compound.”
“Knowing the producer of palmerolide A enables cultivation, which will finally provide sufficient quantity of the compound for needed studies of its pharmacological properties,” added Baker.
A diver collects samples of Synoicum adareanum in support of a microbiome and biosynthetic gene cluster study. Palmer Station Antarctica, March 2011.
Credit: Bill Dent, University of South Florida.
Many additional questions remain, such as how S. adareanum and its palmerolide-producing symbiont are distributed across the landscape in Antarctic Oceans, or what role palmerolide A plays in the ecology of this species of ascidian. Likewise, a detailed investigation into how the genes code for the enzymes that make palmerolide A is the subject of a new report soon to be published.
To survive in the harsh and unusual environment of the Antarctic sea floor, ascidians and other invertebrates such as sponges and corals have developed symbiotic relationships with diverse microbes that play a role in the production of features such as photoprotective pigments, bioluminescence, and chemical defense agents. The compounds produced by these microbes may have medicinal and biotechnological applications useful to humans in science, health and industry. Palmerolide A is one of many examples yet to be discovered.
“Throughout the course of disentangling the many genomic fragments of the various species in the microbiome, we discovered that this novel microbe’s genome appears to harbor multiple copies of the genes responsible for palmerolide production,” said Patrick Chain, Ph.D., senior scientist and Laboratory Fellow with LANL. “However the role of each copy, and regulation, for example, are unknown. This suggests palmerolide is likely quite important to the bacterium or the host, though we have yet to understand it’s biological or ecological role within this Antarctic setting.”
“This is a beautiful example of how nature is the best chemist out there,” Murray added. “The fact that microbes can make these bioactive and sometimes toxic compounds that can help the hosts to facilitate their survival is exemplary of the evolutionary intricacies found between hosts and their microbial partners and the chemical handshakes that are going on under our feet on all corners of the planet.”
Andrew Schilling (University of South Florida) dives in 100 feet of water at Cormorant Wall, Antarctica. Samples for microbiome characterization were collected by SCUBA divers working in the chilly subzero seas off Anvers Island, in the Antarctic Peninsula.
Credit: Bill J. Baker, University of South Florida.
More information:
The full study, Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential, is available from mSphere.
Study authors included Alison Murray (DRI), Chein-Chi Lo (LANL), Hajnalka E. Daligault (LANL), Nicole E. Avalon (USF), Robert W. Read (DRI), Karen W. Davenport (LANL), Mary L. Higham (DRI), Yuliya Kunde (LANL), Armand E.K. Dichosa (LANL), Bill J. Baker (USF), and Patrick S.G. Chain (LANL).
This study was made possible with funding from the National Institutes of Health (CA205932), the National Science Foundation (OPP-0442857, ANT-0838776, and PLR-1341339), and DRI (Institute Project Assignment).
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About The University of South Florida
The University of South Florida is a high-impact global research university dedicated to student success. Over the past 10 years, no other public university in the country has risen faster in U.S. News and World Report’s national university rankings than USF. Serving more than 50,000 students on campuses in Tampa, St. Petersburg and Sarasota-Manatee, USF is designated as a Preeminent State Research University by the Florida Board of Governors, placing it in the most elite category among the state’s 12 public universities. USF has earned widespread national recognition for its success graduating under-represented minority and limited-income students at rates equal to or higher than white and higher income students. USF is a member of the American Athletic Conference. Learn more at www.usf.edu.
About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.
Oct 26, 2021 | Announcements, News releases
New DRI Internship Program Focuses on Mentorship for Inclusion in STEM
Oct 26, 2021
RENO, NEV.
By Kelsey Fitzgerald
Internships
Career Development
STEM
Above: DRI Research Internship Immersion Program students Mary Andres (left) and John Cooper (right) work with faculty mentor Dr. Riccardo Panella in his laboratory on DRI’s Reno campus.
Research immersion internships provide career-building opportunities for students from Nevada’s two-year colleges
From wildflower blooms to microplastics pollution, fourteen students from Nevada’s two-year colleges are spending this fall building career skills in exciting new directions. The students are conducting hands-on research alongside
DRI scientists in Reno and Las Vegas through DRI’s new
Research Immersion Internship Program.
Although professional internship opportunities are fairly common in the sciences, many positions are aimed at students who are enrolled in four-year science degree programs. DRI’s new internship program takes a more inclusive approach, creating an opportunity specifically aimed at students from two-year colleges and welcoming those majoring in fields from outside of traditional scientific disciplines.
“Science and innovation thrive when people of diverse skillsets work together, because real-world problems are often very interdisciplinary,” said Internship Program Director Meghan Collins, M.S. “In addition to traditional scientific fields, drawing in students with interests in communications, business, public health, computing, and many other areas can bring new perspectives and new solutions to the table.”
DRI faculty mentor Riccardo Panella, Ph.D., (left) and student intern John Cooper (right) review calculations as part of an ongoing research project that tests a new therapeutic approach to treating metabolic disorders. Panella is an assistant research professor of cancer and genetics with the Center for Genomic Medicine at DRI; Cooper is a student at Truckee Meadows Community College.
DRI’s internship program began in September and runs for 16 weeks. Students have been placed in teams of two to four people, and are working under the direction of DRI faculty mentors from the Institute’s Reno and Las Vegas campuses on a variety of project themes.
One team of interns is working with Erick Bandala, Ph.D., assistant research professor of environmental science from DRI’s Las Vegas campus, to investigate water security in Native American communities of the Southwestern U.S. His team consists of three students from Nevada State College – two environmental studies majors and one math major.
“Many people in Native American communities lack access to running water in their homes and experience problems with water quality as well,” Bandala said. “We are exploring data that was collected by Tribes and water treatment facilities to learn about the scale of the problem and how it can be improved. I love the challenge and hope that my team will come out with helpful information. Water security is a very complicated issue, but the students that I am working with are very enthusiastic, and I am happy to be interacting with them.”
Other project themes for the program’s inaugural semester include documentation and analysis of wildflower superblooms (above-average bursts of blooming wildflowers) in the Western U.S., an investigation into the effects of wildfire on water repellency of soils, a study on how microplastic particles can be transported through the air, and a study investigating the effects of obesity on health challenges in mice.
Above, left: Student intern Mary Andres from Truckee Meadows Community College prepares reagents needed to analyze lipid profiles and hepatic enzymes in a study being conducted by DRI’s Center for Genomic Medicine. The results of these experiments will pave the way for a new generation of RNA-based therapies to treat metabolic disorders and prevent cancer progression.
Above, right: DRI faculty mentor Riccardo Panella, Ph.D., (left) of the Center for Genomic Medicine and Truckee Meadows Community College student Mary Andres (right) use a bright light to view a sample in Panella’s laboratory in Reno.
This year’s cohort includes students from Nevada State College,
Truckee Meadows Community College,
Great Basin College, and the
University of Nevada, Reno. Because many of the students are early in their college journeys, or come from fields outside of the sciences, the internship program provides stepping-stones to help them build the fundamental skills they need to succeed, including a month-long period of training prior to implementing their projects.
At the end of the semester, the student teams will deliver their project results and receive feedback from their faculty mentors. The end goal is to help foster the next generation of diverse scientists through mentorship, inclusion, and skill building.
“There are a lot of independent internships available to science majors, but not many programs that prepare students to be successful working in the sciences in the real world – especially for students who are coming from two-year college programs or from outside of scientific disciplines,” Collins said. “This program aligns with some of DRI’s larger goals of improving diversity and inclusion at DRI and in the sciences as a whole, while also providing important stepping-stones for students to learn to navigate the culture of science.”
Student Intern John Cooper from Truckee Meadows Community College prepares reagents in Riccardo Panella’s laboratory at DRI in Reno, as part of DRI’s new Research Internship Immersion Program.
More Information:
For more information on DRI’s Research Immersion Internship Program, please visit: https://www.dri.edu/immersion/.
DRI faculty mentors for the Research Immersion Internship Program include Erick Bandala, Riccardo Panella, Eden Furtak-Cole, Markus Berli, Christine Albano, and Meghan Collins.
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Jul 27, 2021 | Blog, Featured projects
From COVID-19 to Drought:
Collaborating on Emerging Challenges Across Indian Country
July 27, 2021
RENO, NEV.
By Kelsey Fitzgerald
COVID-19
Drought
Emergency Response
Featured work by the Native Waters on Arid Lands project’s COVID-19 Working Group.
On a recent Friday, Maureen McCarthy, Ph.D., of the Desert Research Institute (DRI) and Vicki Hebb of the University of Nevada, Reno (UNR) did the same thing they’ve done each Friday since the COVID-19 pandemic began, nearly 70 Fridays ago: they kicked off a weekly Zoom call with the Native Waters on Arid Lands (NWAL) project’s COVID-19 Working Group, an ever-expanding network of Tribal Extension Agents, agricultural producers, educators, and federal agency leaders from U.S. Department of Agriculture (USDA), Federal Emergency Management Agency (FEMA) and other agencies across the U.S. that are working together to solve problems and share information across Indian Country.
On the call were many regulars and a few new faces, whom McCarthy and Hebb greeted warmly, chatting about recent hot weather in South Dakota, Montana, and elsewhere around the U.S. before getting into the day’s agenda. First, weekly updates from program leaders of the USDA Office of Tribal Relations, USDA-National Institute of Food and Agriculture (NIFA), FEMA, and the Intertribal Agriculture Council (IAC) on new programs, grant opportunities, and upcoming events. Then, a presentation on the week’s featured topic – an update on wildfire projections for the coming summer from Nick Nauslar, Bureau of Land Management fire meteorologist with the National Interagency Fire Center in Boise.
“Basically, we’re just problem solving and information sharing,” said McCarthy, program director for NWAL. “We have people each week who give regular updates from their agencies, and then we have a featured topic that’s related to the ongoing challenges or interests of the group – which could be anything from food security to COVID vaccine education to drought briefings. We’ve created a platform that didn’t exist before in Indian Country for people to share information among themselves.”
NWAL Team member Kyle Bocinsky presents information on drought to the COVID-19 Working Group during a Zoom call in April 2021.
New problems, new platform
The COVID-19 pandemic produced unexpected challenges for people in all parts of the world, but hit particularly hard in many reservation communities across the U.S. due to factors such as lack of access to clean water, overcrowded homes, intergenerational families, high rates of disease, lack of access to health care, and economic challenges. In mid-March of 2020, several members of the NWAL team reported to McCarthy that tribes in their regions were facing a number of dire pandemic-related problems; in response, McCarthy, Hebb, Trent Teegerstrom (tribal extension director for the University of Arizona), and Staci Emm (tribal extension coordinator for UNR) began organizing weekly Zoom calls with USDA program leaders and NWAL tribal partners from across Indian Country to facilitate direct communication about urgent on-the-ground issues.
“There were loads of problems,” McCarthy said. “People were confused about what COVID was. They didn’t know what was going on. Hopi and Navajo didn’t have wood, they didn’t have water, they didn’t have PPE (personal protective equipment), they were running out of food. They were running out of hay for their livestock.”
The first several calls provided a platform for tribal members and tribal extension agents from various reservations to communicate their most urgent challenges and needs. They also featured briefings from medical professionals about what COVID-19 was, how it was spreading, and what actions could be taken by tribal communities and educators. From there, connections were made, and the group slowly expanded in size and scope.
“When we started, we thought we would do these calls for a few weeks or a few months,” Hebb said. “It grew from our immediate group – the Native Waters on Arid Lands team – to now having representatives from tribes all over the country, including Alaska, as well as key tribal agricultural organizations and federal agency partners. Now we’re more than a year into it, with close to 200 people on the weekly invite list.”
The NWAL team’s ArcGIS StoryMap, “COVID-19 in Indian Country,” tracked impacts of the COVID-19 pandemic shared on the weekly Zoom calls, as well as the group’s COVID-19 response projects. Click the photo above to view the StoryMap.
Projects and accomplishments
One of the group’s earliest accomplishments was to develop a list of urgent issues and actionable items for federal agency partners. Requests included reimbursements for farmers who had to keep animals alive during livestock trading shutdowns, loan relief to cover grazing leases, funding for local food production programs, and improved access to medical supplies and COVID-19 test kits.
Certain problems voiced on the calls were solved just by putting the right people in touch with each other. For example, on a call in May 2020, representatives from the Hopi Tribe and Navajo Nation spoke to the desperate need for firewood to heat their homes. A Forest Service representative offered up a supply of wood from a nearby forest thinning project and others from the Working Group joined forces to locate a trucking company and make it happen, resulting in the delivery of more than 100 cords of wood to Hopi and Navajo communities.
As other challenges surfaced, the Working Group mobilized to assist. When hay was in short supply on the Hopi Reservation last June, the group coordinated a donation of 350 bales to feed hungry livestock. When water quality became a concern in tribal buildings that were left vacant during COVID-19 closures, the group partnered with a water testing and purification company, Nephros, to analyze water samples. When a representative from an Alaskan Native community spoke to the need for essential non-food items in villages hit hard by COVID-19 last December, the group organized a successful donation drive for items such as cleaning supplies, hand sanitizer, and winter clothing for children. And in February 2021, when call participants voiced concerns about rumors and misinformation around the COVID-19 vaccines, the Working Group created a new website called “Facts Not Fear” to supply accurate information and educational resources to individuals in Indian Country.
“I think this group has just done an enormous amount – we’ve changed a lot of people’s lives, in little ways that were really, really important, especially during COVID,” said Erin Riley, national program leader for USDA-NIFA. “A lot of people really needed assistance, and we were able to provide that. I also think that one thing that we did that was special was we were really able to work together between the government, project directors, non-government organizations, and communities in a way that is a model for how things are supposed to work under our particular political structure.”
Pam Lalo, Hopi Veterinarian Technician, unloads hay bales after a hay delivery to the Hopi Nation on June 27, 2020. Credit: Robinson Honani, Hopi Department of Natural Resources. Click photo above to read full story.
In May 2020, the COVID-19 Working Group arranged for the delivery of more than 100 cords of wood to the Hopi Tribe and Navajo Nation. Click the photo above to read the full story.
When a representative from an Alaskan Native community spoke to the need for essential non-food items, the COVID-19 Working Group organized a successful donation drive. Click photo above to read the full story.
In response to concerns about rumors and misinformation around COVID-19 vaccines, the Working Group created a website called “Facts Not Fear.” Click the image above to visit the site.
Looking forward: From the challenges of COVID-19 to ongoing impacts of extreme drought
Over time, it has become clear that the weekly calls are meeting a need. Although the problems may change from week to week, the benefits of connecting with like-minded partners and tackling big problems together won’t be going away any time soon.
As certain pandemic-related challenges have begun to fade, new challenges are emerging. The southwestern U.S. is now experiencing extreme to exceptional levels of drought, and the Working Group continues to meet weekly via Zoom for a presentation on a timely issue and collaboration on what the group can do to assist. Recent call topics have included drought projections, COVID-19 vaccine information, mental health and farm stress, drought impacts on pollinators and invasive species, and wildfire forecasts.
“I think the most important thing that’s come out of our weekly calls is that there’s a trusted place to exchange information and that we are able to get reliable information out to people on the ground really fast,” Hebb said. “This is really helping tribal producers make decisions that improve their livelihoods.”
More information:
The Native Waters on Arid Lands Project: https://nativewaters-aridlands.com
The NWAL COVID-19 Working Group StoryMap- https://nativewaters-aridlands.com/covid19
Facts Not Fear: https://factsnotfearcovid.com
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education.
About Native Waters on Arid Lands
The Native Waters on Arid Lands (NWAL; https://nativewaters-aridlands.com) project seeks to enhance the climate resiliency of agriculture on American Indian lands of the Great Basin and Southwest by building the capacity within tribal communities to develop and implement reservation-wide plans, policies, and practices to support sustainable agriculture and water management. Partners in the project include the Desert Research Institute; the University of Nevada, Reno; the University of Arizona; First Americans Land-Grant Consortium; Utah State University; Ohio University; and the Federally Recognized Tribal Extension Program in Nevada and Arizona. This project is funded by the U.S. Department of Agriculture’s National Institute of Food and Agriculture
Jul 15, 2021 | News releases, Research findings
Wildfire Smoke Exposure Linked to Increased Risk of Contracting COVID-19
July 15, 2021
RENO, NEV.
By Kelsey Fitzgerald
Wildfire Smoke
COVID-19
Health
Above: Wildfire smoke has been linked to increased risk of contracting COVID-19, according to the results of a new study.
Credit: U.S. Department of Agriculture (public domain image)
A new DRI-led study finds a 17.7 percent rise in COVID-19 cases after a prolonged 2020 wildfire smoke event in Reno, Nev.
Wildfire smoke may greatly increase susceptibility to SARS-CoV-2, the virus that causes COVID-19, according to new research from the Center for Genomic Medicine at the Desert Research Institute (DRI), Washoe County Health District (WCHD), and Renown Health (Renown) in Reno, Nev.
In a study published earlier this week in the Journal of Exposure Science and Environmental Epidemiology, the DRI-led research team set out to examine whether smoke from 2020 wildfires in the Western U.S. was associated with an increase in SARS-CoV-2 infections in Reno.
To explore this, the study team used models to analyze the relationship between fine particulate matter (PM 2.5) from wildfire smoke and SARS-CoV-2 test positivity rate data from Renown Health, a large, integrated healthcare network serving Nevada, Lake Tahoe, and northeast California. According to their results, PM 2.5 from wildfire smoke was responsible for a 17.7 percent increase in the number of COVID-19 cases that occurred during a period of prolonged smoke that took place between Aug. 16 and Oct. 10, 2020.
“Our results showed a substantial increase in the COVID-19 positivity rate in Reno during a time when we were affected by heavy wildfire smoke from California wildfires,” said Daniel Kiser, M.S., co-lead author of the study and assistant research scientist of data science at DRI. “This is important to be aware of as we are already confronting heavy wildfire smoke from the Beckwourth Complex fire and with COVID-19 cases again rising in Nevada and other parts of the Western U.S.”
Wildfire smoke may greatly increase susceptibility to SARS-CoV-2, the virus that causes COVID-19, according to new research from the Center for Genomic Medicine at the Desert Research Institute, Washoe County Health District, and Renown Health in Reno, Nev.
The full text of the study, “SARS-CoV-2 test positivity rate in Reno, Nevada: association with PM2.5 during the 2020 wildfire smoke events in the western United States,” is available from the Journal of Exposure Science and Environmental Epidemiology: https://www.nature.com/articles/s41370-021-00366-w
Reno, located in Washoe County (population 450,000) of northern Nevada, was exposed to higher concentrations of PM2.5 for longer periods of time in 2020 than other nearby metropolitan areas, including San Francisco. Reno experienced 43 days of elevated PM2.5 during the study period, as opposed to 26 days in the San Francisco Bay Area.
“We had a unique situation here in Reno last year where we were exposed to wildfire smoke more often than many other areas, including the Bay Area,” said Gai Elhanan, M.D., co-lead author of the study and associate research scientist of computer science at DRI. “We are located in an intermountain valley that restricts the dispersion of pollutants and possibly increases the magnitude of exposure, which makes it even more important for us to understand smoke impacts on human health.”
Kiser’s and Elhanan’s new research builds upon past work of studies in San Francisco and Orange County by controlling for additional variables such as the general prevalence of the virus, air temperature, and the number of tests administered, in a location that was heavily impacted by wildfire smoke.
“We believe that our study greatly strengthens the evidence that wildfire smoke can enhance the spread of SARS-CoV-2,” said Elhanan. “We would love public health officials across the U.S. to be a lot more aware of this because there are things we can do in terms of public preparedness in the community to allow people to escape smoke during wildfire events.”
More information:
Additional study authors include William Metcalf (DRI), Brendan Schnieder (WCHD), and Joseph Grzymski, a corresponding author (DRI/Renown). This research was funded by Renown Health and the Nevada Governor’s Office of Economic Development Coronavirus Relief Fund.
The full text of the study, “SARS-CoV-2 test positivity rate in Reno, Nevada: association with PM2.5 during the 2020 wildfire smoke events in the western United States,” is available from the Journal of Exposure Science and Environmental Epidemiology: https://www.nature.com/articles/s41370-021-00366-w
###
About DRI
The Desert Research Institute (DRI) is a recognized world leader in basic and applied environmental research. Committed to scientific excellence and integrity, DRI faculty, students who work alongside them, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge on topics ranging from humans’ impact on the environment to the environment’s impact on humans. DRI’s impactful science and inspiring solutions support Nevada’s diverse economy, provide science-based educational opportunities, and inform policymakers, business leaders, and community members. With campuses in Las Vegas and Reno, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
About Renown Health
Renown Health is the region’s largest, local not-for-profit integrated healthcare network serving Nevada, Lake Tahoe, and northeast California. With a diverse workforce of more than 7,000 employees, Renown has fostered a longstanding culture of excellence, determination, and innovation. The organization comprises a trauma center, two acute care hospitals, a children’s hospital, a rehabilitation hospital, a medical group and urgent care network, and the region’s largest, locally owned not-for-profit insurance company, Hometown Health. Renown is currently enrolling participants in the world’s largest community-based genetic population health study, the Healthy Nevada Project®. For more information, visit renown.org.
About Washoe County Health District Air Quality Management Division –
The Air Quality Management Division (AQMD) implements clean air solutions that protect the quality of life for the citizens of Reno, Sparks, and Washoe County through community partnerships along with programs and services such as air monitoring, permitting and compliance, planning, and public education. To learn more, please visit OurCleanAir.com.
Media Contact:
Jun 30, 2021 | Awards and Honors, Blog
Each year, the Desert Research Institute (DRI) honors the incredible commitment and dedication of our faculty and staff through an award ceremony called the Celebration of Science. This year’s event was held virtually and recognized the winners of this year’s Nevada System of Higher Education Rising Researcher Award, the DRI Medals for Science, Service, and Outstanding Contributions, the Technologist of the Year, as well as internal divisional and milestone service awards.
2021 Award Winners
DRI Science Medal – Xiaoliang Wang, Ph.D.
The DRI Science Medal is given based on scientific achievement that has brought recognition to both the winning scientist and to DRI, through either cumulative or a singular outstanding achievement. This award builds on the history of the Count Alessandro Dandini Medal of Science and the Nazir and Mary Ansari Medal for Excellence in Science, which annually recognized the high scientific accomplishments of a DRI faculty member.
Outstanding Contributions Medal – Tim Brown, Ph.D.
The Outstanding Contributions Medial is given annually to a DRI faculty or staff member for outstanding contributions to the Institution. Evidence of contributions can include establishing new directions for research, securing a large grant, or management of large programs.
Service Medal – Jennifer Schultz
The DRI Service Medal is awarded annually to a faculty or staff member who makes broad impacts across the Institution and throughout our communities, making DRI a better place to work and securing our place as a core research asset.
Technical Employee of the Year – Alison Swallow
The Technical Employee of the Year is awarded annually to a staff member for outstanding contributions to the Institution.
Rising Researcher Award – Daniel McEvoy, Ph.D.
Awarded annually by the Nevada System of Higher Education (NSHE) to a faculty member in recognition of outstanding early-career accomplishments in research.
Division Awards
George Burke Maxey Fellowship – Marc Berghouse
Peter B. Wagner Medal of Excellence – Monica Arienzo, Ph.D.
Jonathan O. Davis Scholarship – Erica Bradley and Hayden Kingrey
General Frederick Lander Scholarship – Pearson Nguyen
Colin Warden Memorial Endowment - Pramod Adhikari
Advisor of the Year award – Alison Murray, Ph.D.
Years of Service Milestones
50 Years of Service
35 Years of Service
30 Years of Service
- Lynn Fenstermaker
- Hans Moosmuller
- Ron Hershey
- Tim Minor
- Peter Ross
25 Years of Service
20 Years of Service
- Yvonne Rumbaugh
- Vicki Hall
- Richard Susfalk
- Lynn Karr
- John Karlas
- Glen Wilson
- David Page
- David Campbell
- Cheryl Collins
- Alison Murray
15 Years of Service
- Steven Bacon
- Sophie Baker
- Maureen King
- Karl Schoen
- Donna Schlemmer
- Derek Kauneckis
- Charles Dolbeare
- Alan Heyvaert
10 Years of Service
- Tatianna Menocal
- Tamara Wall
- Suzanne Hudson
- Robert Read
- Maria Vasquez
- Jeffrey Wedding
- Jason Rada
- Iva Neveux
- Eric Wilcox
- Daniel McEvoy
- Albert Wolff
5 Years of Service
- Xuelian Bai
- William (Jim) Metcalf
- Vinay Amin
- Teresa Wriston
- Rae Yuhas
- Nicole Sund
- Kevin Heintz
- Karen Stewart
- John Goetz
- Joanne Huston
- Erick Bandala Gonzalez
- Bruce Lipp
Congratulations to our faculty and staff who were recognized during this year’s Celebration of Science! Perhaps our Special Guest, NSHE Regent Jason Geddes put it best when he said, “DRI is known here in Nevada and around the world as a place where groundbreaking research is conducted, but the greatest asset that DRI has is its people.”
May 3, 2021 | Blog, Featured researchers
DRI and partners test new method for reseeding native forests after wildfire
MAY 3, 2021
RENO, NEV.
By Kelsey Fitzgerald
Forest Restoration
Technology
Wildfire
Patrick Melarkey of the Desert Research Institute flies the drone during a reseeding flight at the Loyalton Fire burn area on April 22, 2021.
Drones are being tested for use in reseeding projects in other parts of the world, including California and the Pacific Northwest, but this project marks the first time this technology has been tested in the Eastern Sierra. For a trial area, the group selected a 25-acre site in a portion of the Humboldt-Toiyabe National Forest that burned in the Loyalton Fire of August, 2020.
A hillside burned by the Loyalton Fire during August 2020. On April 22, 2021, the Desert Research Institute, Flying Forests, the Sugar Pine Foundation, and the Humboldt-Toiyabe National Forest conducted a reseeding project at this site using new drone technology.
Prior to the drone reseeding event, DRI archaeologist Dave Page, M.A., conducted aerial mapping at the burn site. This detailed imagery was used to determine an appropriate flight path for dispersing seeds evenly across the burn area, and was programmed into software that guided the drone during the reseeding mission.
A drone carrying small seed balls of Jeffrey pine takes flight during a reseeding project at the Loyalton Fire burn area on April 22, 2021.
On April 22nd and 23rd, 2021, DRI scientists Patrick Melarkey and Jesse Juchtzer provided technical expertise as drone pilots for the reseeding portion of the project. Over the course of two days of flying, Melarkey and Juchtzer dropped 25,000 Jeffrey pine seedballs across the 25-acre burn area. The drone made a total of 35 flights, carrying approximately 700-750 seedballs per flight.
Above: Patrick Melarkey and Jesse Juchtzer from DRI fly a drone carrying small seed balls of Jeffrey pine during a reseeding project at the Loyalton Fire burn area on April 22, 2021.
The seed balls were provided by the Sugar Pine Foundation, which worked with local community volunteers to collect more than 30 pounds of Jeffrey pine seed during the past year. The seed was combined with soil and nutrients into small balls that could be carried and distributed by the drone.
Small seedballs containing seeds of Jeffrey pine were prepared by the Sugar Pine Foundation in preparation for reseeding the Loyalton Fire burn area by drone. Each seedball contains approximately 3 seeds of Jeffrey pine. April 22, 2021.
The technology used on this project to plant with drones was invented by Dr. Lauren Fletcher of Flying Forests. Fletcher is a 5th generation Nevadan and graduate of the University of Nevada, Reno, Stanford, and Oxford.
Above, left: Personnel from Flying Forests load seedballs of Jeffrey pine into a drone prior to a reseeding flight at the Loyalton Fire burn area on April 22, 2021. Above, right: Lauren Fletcher of Flying Forests invented the seed-spreading technology that was used during the drone reseeding project.
Replanting native trees in burned areas can help stabilize slopes, reduce erosion, discourage growth of non-native plant species, and speed up the recovery of critical habitat for wildlife. Reforestation of burned areas is often done by planting small tree seedlings – but in areas far from roads or areas with especially steep terrain, this method can be expensive, labor-intensive, and dangerous. Spreading seeds by drone may provide a safer, cheaper, and easier alternative.
Next, the group will monitor and study the area to observe the success rate of this method of restoration.
Looking west from a hillside burned by the Loyalton Fire during August 2020. On April 22, 2021, the Desert Research Institute, Flying Forests, the Sugar Pine Foundation, and the Humboldt-Toiyabe National Forest conducted a reseeding project on the burn area using new drone technology.
###
About Desert Research Institute
The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education.
Apr 19, 2021 | Blog, Featured researchers
Meet Dylan Person, Graduate Researcher
APRIL 19, 2021
LAS VEGAS, NEV.
By Kaylynn Perez
Archaeology
Cultural Resource Management
Antrhopology
Dylan Person is a graduate research assistant with the Division of Earth and Ecosystem Sciences at the Desert Research Institute (DRI) in Las Vegas. He is a Ph.D. student in Anthropology, Archaeology subfield, at the University of Nevada Las Vegas. Learn more about Dylan and his graduate research in this interview with DRI’s Behind the Science Blog!
Dylan Person is a graduate research assistant with the Division of Earth and Ecosystems Sciences at DRI in Las Vegas.
DRI: What brought you to DRI?
Person: I was introduced to DRI through the UNLV Department of Anthropology. I became interested in coming to DRI as a graduate assistant when I learned that a position at DRI gave students the opportunity to perform fieldwork as well as write reports and plan projects for cultural resource management archaeology. In addition to this great opportunity for learning new aspects of this area of archaeology, I jumped at the chance to learn more about Native American archaeology in the Great Basin since my research focus at UNLV is primarily based in New Mexico. I also got really excited when I learned that I’d be working with historic nuclear testing resources since that’s such a major part of America’s scientific history.
DRI: What are you studying?
Person: I study stone tool technology and how it interrelated with cultural and social life at sites in the Mimbres Mogollon region of southwestern New Mexico. The time period I study was around AD 550-1130 and during this time these people changed from highly mobile foragers to living in settled agricultural villages. This resulted in changes in their social organization that I think also impacted the way they made and used stone tools. Though this is not directly related to DRI’s work, experience with similar artifacts in the Great Basin has added a new dimension to my own work.
Archaeology in the Great Basin is very focused on mobile groups and studying here and working with these archaeological sites at DRI has taught me a lot about how mobile people moved around and interacted with their environment. This knowledge has really deepened my understanding of how groups of people in my study area acted when practicing this lifeway and expanded the range of my research.
Above, left: Dylan Person and his boxer, Wiggles, hike along the McCullough Hills Trail in the Sloan Canyon National Conservation Area of Nevada. Above, right: One of Dylan’s fieldwork sites in San Bernardino, California.
Credit: Lizzie Person (left photo); Jared Miles (right photo).
DRI: What research projects are you working on? And who at DRI are you working with?
Person: I work with the Cultural Resource Management Program team. They’re a great group of archaeologists and historians who have a variety of interesting projects in addition to their cultural resource work. My supervisor is Maureen King, who has been very supportive of my academic progress and has helped me a lot in my professional development. Though I work with a combination of United States history and earlier Native American history, Maureen is great about involving me with program projects that align with my research interests here in Nevada, which I’ll talk a little more about below.
Currently, I am working on my dissertation research which involves the stone tool study that I mentioned previously. At DRI I have mostly been focusing on working with historic nuclear testing activities for cultural resource management. Informally at DRI, I have been looking at how groups moved throughout southern and central Nevada and adjacent regions. I’m interested in how these travel routes map on to environmental features such as water sources like springs, rivers, and wetlands as well as other resource-rich areas. Since these resources included plants, animals, rocks for tools, and culturally significant areas I have a lot to work with when it comes to investigating the how and why of people’s interaction with these areas over a long period of time.
Additionally, our program at DRI has a long history of working closely with Native American groups who live in the region. Being exposed to Native perspectives on the land and environment is a really valuable addition, since they have inherited a cultural understanding of this area that only comes from lived experience and long tradition. Though I don’t presume to fully understand how previous generations of Native Americans of the Mojave and Great Basin thought about their environment and lives, being around these perspectives has really opened up my mind to ideas and viewpoints that I wouldn’t have developed on my own. I’m really grateful for that!
DRI: What are your short-term and long-term goals while at DRI?
Person: In the short term, I hope to continue making contributions to our program and its support of projects through cultural resource management.
In the long term, I want to learn everything I can during my time in our program so that I am well-situated for both academic and non-academic archaeological work. I also want to formalize some of my research interests into a developed research plan, one that ideally would contain public science-focused elements. I’m really interested in public science and supporting science education in general.
Above, left: Dylan Person at the office on DRI’s Las Vegas campus. Above, right: One of Dylan’s field sites in San Bernardino County, California.
Credit: Dylan Person/DRI (left photo), Jared Miles (right photo).
DRI: Tell us about yourself. What do you do for fun?
Person: I like to get out in nature. So hiking, camping, bouldering, and other types of outdoor activities are always a good time. I’m a sort of amateur geologist, so I also like checking out interesting rock formations and the overall geology of a place. Nevada is a really great place for all that so I have a lot of options!
When I’m not running around outside, I play music. I play a few instruments but I’m best at the guitar and I play just about any style that a guitar can do, so rock/blues, country, bluegrass, jazz and even classical music. I also like cooking and especially grilling, backyard hangouts, and spending time with my wife Lizzie and our Boxer dog Wiggles, who are my companions in all these things I do for fun. One of these days I’ll have the space to get a project car so I can finally finish learning auto mechanics without worrying about messing up my daily driver!
In his free time, Dylan enjoys spending time with his wife Lizzie and their boxer, Wiggles.
Nov 16, 2020 | Announcements, News releases
Above: In Coal Valley, located in Lincoln County, Nev., dry playas and ancient shorelines of ice-aged lakes hold clues to some of the Great Basin’s earliest inhabitants. DRI archaeologists are working to learn more about these ancient cultures through a new luminescence dating technique. Credit: DRI.
Reno, Nev. (Nov 16, 2020) – In Lincoln County, Nev., dry playas and ancient shorelines of ice-aged lakes hold clues to some of the Great Basin’s earliest inhabitants – but assigning precise dates to archaeological artifacts and features buried within the region’s shifting sands and silts has long proved challenging.
Now, with new funding from the Lincoln County Archaeological Initiative managed by the Bureau of Land Management, a group of scientists led by Christina Neudorf, Ph.D. and Teresa Wriston, Ph.D. of the Desert Research Institute (DRI) in Reno will improve our knowledge of Lincoln County’s rich archaeological history by developing and refining a new technique in luminescence dating.
Luminescence dating, which uses light emitted by minerals to date events in the past, is a technique most commonly applied to silt or sand samples. In this project, the research team will apply new methods in luminescence dating to analyze the burial ages of larger rock samples.
“Trying to develop a technique to date the burial ages of rocks will help us better understand the lake levels of the past and when people would have used or settled along these beaches,” said Neudorf, Assistant Research Professor of Geology and manager of DRI’s Luminescence Laboratory. “We think this will be more accurate than dating sand, which often gets reworked and redeposited over time.”
The project involves several phases. Researchers will first conduct fieldwork in Coal Valley, located within the Basin and Range National Monument, to gather rock samples from pre-approved areas close to known archaeological sites. They will then process the samples at the DRI Luminescence Laboratory in Reno by extracting and dating quartz and feldspar from the rock. Finally, the team will analyze their data and produce a technical report detailing enhanced knowledge of lake history and archaeology for the use of future archaeological surveys in Lincoln County. They will also produce a series of videos that summarize the work.
The ability to date rock surfaces using luminescence dating is an exciting advance that will help archaeologists more quickly identify appropriate areas of the landscape for study, Wriston said. Eventually, she hopes to be able to use this technique to date rock art by identifying when the rock surface was covered with paint, or to date when particular artifacts that have been buried were last used or exposed to light.
“This technique will really revolutionize Paleoamerican archaeological studies in the west,” Wriston said. “We know that people used these shorelines; that’s what attracted the earliest people to the Great Basin. This luminescence dating technique will help us build on results of previous work in the Coal Valley area of Lincoln County and give us a more complete picture of the ancient lake history and people’s place in it.”
###
The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Nov 10, 2020 | Announcements, News releases
Caption: Pictographs from a site at Fort Hunter Liggett, processed with D-stretch imagery. DRI Archaeologists will soon travel to Fort Hunter Liggett, in California, to document rock art in high resolution. Credit: Fort Hunter Liggett.
Las Vegas, Nev. (Nov. 10, 2020) – Long ago, before widespread European-American settlement, ancestors of the Salinan Tribe left rock art featuring colorful handprints and abstract symbols at various sites located along narrow valleys and rugged hills in southern Monterey County, Calif. This month, a group of Desert Research Institute (DRI) archaeologists will document several of these sites using high resolution photography, in partnership with the U.S. Army’s Fort Hunter Liggett Cultural Resources Management Program.
The project, which is co-led by DRI’s Greg Haynes, Ph.D. and Dave Page, M.A., with technical support from staff at Fort Hunter Liggett, will provide updated photographic documentation and a rock art management plan for pictographs (images painted on rock) and petroglyphs (images carved into rock) at eight different sites located on the grounds of Fort Hunter Liggett. One site, called La Cueva Pintada, or the Painted Cave, is estimated to have hundreds of pictographs and is listed on the National Register of Historic Places.
“Many of the pictographs are handprints, but kind of unusual – they look like they were made by people swiping their fingers across the rock face,” Haynes said. “There are also various abstract symbols. They’re multicolored – red, white, black, yellow, and possibly blue or green – so part of our work will be to determine what pigments were used and to advise the Army on how to best preserve them.”
The DRI project team includes Megan Stueve, M.A., who will provide expertise in rock art recording and in the photographic documentation of pictographs using D-stretch imagery, a computer program that helps bring out colors that can’t be seen with the naked eye.
“D-stretch, short for decorrelation stretching, is a type of image processing that essentially stretches or exaggerates the colors to make them easier to see,” Stueve explained. “Images that you can already see become very visible and that those are faint hopefully become more visible.”

DRI Archaeologists will use D-Stretch imagery to document rock art at Fort Hunter Liggett in high resolution. The photographs on the left, showing pictographs from a site at Fort Hunter Liggett, have not been altered; The photographs on the right, processed with D-stretch imagery, show the pictographs in greater detail. Credit: Fort Hunter Liggett.
In addition to petroglyphs and pictographs, the Salinan people of this region left behind an abundance of bedrock mortars, circular depressions in rock outcrops that were likely used for grinding food items such as acorns, but may also have been used to grind the pigment to make the pictographs. The extensive use of the area might indicate it was used as a habitation locale or meeting area, or possibly for ceremonial purposes, Stueve said.
Although all of the sites that the DRI team will visit have been documented previously, some site records have not been updated in more than 30 years. As part of this project, they will provide Fort Hunter Liggett with up-to-date site records and photographs, and also make recommendations for future study and preservation of these pictographs and petroglyphs.
“The Army wants a management plan for the preservation of these historical resources,” Haynes said. “In addition to these pictographs, there are a few other important historic sites nearby. There’s a mission called Mission San Antonio de Padua that was founded in 1771 by Father Junipero Serra, and a hacienda that was built for William Randolph Hearst. It’s an important area with an interesting history.”
###
The Desert Research Institute (DRI) is a recognized world leader in basic and applied interdisciplinary research. Committed to scientific excellence and integrity, DRI faculty, students, and staff have developed scientific knowledge and innovative technologies in research projects around the globe. Since 1959, DRI’s research has advanced scientific knowledge, supported Nevada’s diversifying economy, provided science-based educational opportunities, and informed policy makers, business leaders, and community members. With campuses in Reno and Las Vegas, DRI serves as the non-profit research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.
Sep 22, 2020 | News releases, Research findings
Photo caption: Smoke from wildfires covering the city of Sparks, Nevada. Credit: GChapel, Adobe Images.
Reno, Nev. (Sept. 22, 2020) – For people who suffer from asthma, wildfire smoke is more hazardous than other types of air pollution, according to a new study from the Desert Research Institute (DRI), the Renown Institute for Health Innovation (Renown IHI) and the Washoe County Health District (WCHD).
The study, which published last month in the journal Environmental Health, examined associations between airborne particulate matter (PM) from sources such as wildfire, transportation and industry, and medical visits for asthma at Renown Health’s emergency departments and urgent care centers in Reno, Nev. during the six-year period from 2013-2018.
According to their results, on days when wildfire smoke was present, elevated levels of PM2.5 (fine particles of 0-2.5 micrometers in size, about 30 times smaller than a human hair) led to a 6.1 percent increase in medical visits for asthma patients when compared with days of similar pollution levels that came from non-wildfire sources.
“Since we found significantly stronger associations of PM2.5 with asthma visit