Ocean Currents

Since observational, modeling and paleoclimate studies have implicated Gulf of California (GC) sea surface temperatures (SSTs) as critical to the development of the North American monsoon (NAM), it is important to study the ocean processes that affect GC SSTs.  The entrance of the GC is a region where two surface currents meet: southward cool waters of the California Current (CC) and northward warm waters of the Mexican Coastal Current (MCC).  The interaction of these two currents controls the seasonal variation of surface circulation in this region.  Numerical simulations and modern observations found that the northward MCC can be formed locally by the wind stress curl. 

In late May or early June, the sea surface height (SSH) topography changes about the time the surface winds in this region slacken, resulting in geostrophic currents that advect tropical surface water into the GC instead of down the coast. The altered circulation in late May-early June may explain the rapid retraction of the 28.5°C isotherm toward the coast in late June, and the corresponding intrusion into the GC, in sharp contrast to SSTs off Baja California that are sometimes ~ 10°C cooler.

The figures below depict the time evolution of SSHs and SSTs. More details can be found in our Journal of Geophysical Research (JGR) paper: Erfani and Mitchell (2014), our Journal of Climate (JC) paper: Mitchell et al. (2002),  and our Atmospheric System Research (ASR) meeting poster: Erfani et al. (2013).

time-evolution-SSHs-SSTs-51503-lg time-evolution-SSHs-SSTs-52503

Above: Sea surface height (SSH) topography with the 50 cm contour in black.  The blue arrows indicate geostrophic current velocities.  The black contour indicates how the direction of these currents (that follow contours of SSH) is altered between May 15th and May 25th.

june-5day-1 june-5day-6

Above: The evolution of the 26°C and the 28.5°C isotherms, based on SST climatology (1983-2000) from Jet Propulsion Laboratory/ Physical Oceanography. Distributed Active Archive Center (JPL/PO.DAAC) at 18 km resolution.  Images are 5-day means centered on 3 June and 28 June.  Courtesy of Dr. Miguel Lavin at Ensenada Center for Scientific Research and Higher Education (CICESE).