The “Micro” Aethalometer®:
an enabling technology for new applications in measuring Aerosol Black Carbon

Anthony D. A. Hansen, Magee Scientific, California
Griša Močnik, Aerosol d.o.o., Slovenia
Aerosol Black Carbon: “Soot”

- Formed in all combustion of carbon fuels
- **Small** particle size (typically < 0.3 µm)
- Graphitic microstructure is **black** (~10 m²/gram)
- **Inert**: not destroyed by in-atmosphere processes: removed from the atmosphere only by deposition
- **Active Surface** may be highly porous and covered with chemically-active functional groups and **toxics**
- May act as a **condensation nucleus** and interact with **cloud nucleation and precipitation**
Aerosol Black Carbon: Sources & Emissions

- BC emission factors can be very different (factor 10^6): emissions depend on quality of combustion
- BC not directly related to CO$_2$ emission
- Climate forcing depends on both CO$_2$ and BC
- Local BC concentrations that affect public health can be highly variable

- BC emissions can not be predicted: must be measured
- Both Climate and Health require more data in all dimensions - BC (X, Y, Z, t)
Aerosol Black Carbon : Global Measurements

WORST : Asia, BC = 10 ~ 100 µg/m³. Exposure of 2 x 10⁹ people
Aerosol Black Carbon : Global Measurements

BEST : Antarctica, BC ~ 100 pg/m³. Exposure of 200 people
Aerosol Black Carbon covers continents

Picture taken at ~ 1000 m. altitude over New Delhi, India: early morning.

City is invisible: solar radiation reaching the ground is reducing ~ 5% per decade over the entire country.

~ 12% of Delhi population (> 3 million people) have **respiratory disease**.
Climate Change Effects of Aerosols

Climate Effects of Black Carbon Aerosols in China and India
S. Menon, J. Hansen et al. *Science* 27 Sep 02: 2250-2253

Haze over Asia: up to 40% of sunlight absorbed. Agriculture affected; local rainfall changed.
Air Pollution Economic Effects

THE COST OF AIR POLLUTION
Cost of particulate emissions as % of national income (GNI)

SOURCE: World Bank 2002
Optical Analysis Method for Black Carbon

- Instantaneous
- Non-destructive
- Mobile / Portable
- Added dimension - time
- Added dimension - wavelength

Light Source \rightarrow BC \rightarrow Light Detectors

Filter with Sample

Reference I_0 \rightarrow Sensing I
Analytical Instrument : Aethalometer®

- Collect sample **continuously**
- Measure optical absorption **continuously**
- May use multiple wavelengths 370 nm ~ 950 nm.
- Convert **optical absorption** to **mass of BC**
- Determine **increment of mass** in each time period
- Measure air flow rate; convert **mass** to **concentration**.
- Real-time data: 1 second / 1 minute
 - Dynamical, real-time measurement, updated each period
Real-Time Optical Absorption Analysis
Analytical Instrument : Aethalometer®

“Large” : 19-inch rack mount chassis
Fixed stations for air-quality monitoring

- Measurements at a fixed point
- Analyze data patterns to determine source contributions
- **Different** locations can have **different** temporal patterns
“Micro” Aethalometer: same principle

.. but smaller size
Micro Aethalometer applications

- Personal exposure monitoring
- Vertical profile – balloons, aircraft
- Indoor monitoring in ‘special’ locations
- Direct measurement of source emissions
Mobile measurements – Barcelona, Spain 2009

“Micro” Aethalometer model AE51
Mobile measurements – Barcelona street study

Micro Aethalometer data: streets of Barcelona, Spain.
Raw 1-second data exactly as recorded

Data courtesy of Audrey de Nazelle, Mark Nieuwenhuijsen, Centre for Research in Environmental Epidemiology (CREAL), Barcelona; Dane Westerdahl; Scott Fruin, Univ. Southern California.
Vertical profiling

California - idea

Italy – tethered balloon

Colorado, USA – released balloon
Vertical profiling - results

Tethered balloon – Milan, Italy
December 2008

Balloon operations courtesy of Dr. L. Ferrero & Prof. E. Bolzzachini,
Dept. of Environmental Science, University of Milano – Bicocca, Italy

Released balloon – Colorado, USA
December 2009

Data courtesy of R. C. Schnell, E. Hall, A. Jordan
NOAA/GMD Boulder CO
Measurements in commercial aircraft – estimates of BC at 10 ~ 12km. altitude

BC measurement in cabin of commercial aircraft: SFO-NYC

Wednesday, 2-Dec-09
depart from San Francisco
at 12 km. altitude in air-traffic zone over Chicago
approach New York

BC ng/m3

9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00

0 100 200 300
Infiltration monitoring in museum

Indoor/Outdoor Monitoring of BC Infiltration
Convent of Santa Maria delle Grazie (Refectory), Milan

Data courtesy of Dane Westerdahl, Univ. Southern California

Griša Močnik
Direct measurement of source emissions

Diesel engine - raw exhaust

Optical BC, thermal EC vs. engine load

Stove Emissions Testing
AITCC Bangkok, 17-Nov-09

BC, ug/m³

Engine Load

0% 20% 40% 60% 80% 100%

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

AE91 Optical BC
NIOSH 5040 Thermal EC

BC, EC ug/m³
Summary

• Black Carbon has serious effects on Health and Climate

• BC is highly variable and must be measured

• “Large” Aethalometers are suitable for fixed stations

• The “Micro” Aethalometer allows for measurements
 • On individual people
 • On balloons and aircraft
 • In ‘special’ indoor locations
 • Of direct source emissions

BC (X, Y, Z, t)
Thank you for your attention,
I’ll be happy to answer any questions.
\(\mu Aeth \Rightarrow BC (X, Y, Z, t) \)

for further information: www. MageeScientific. com