Successful Strategies for Using Lidar for Particle Characterization of Point and Diffuse Area Sources

Randy Martin2, Kori Moore1,2, Michael Wojcik1

1 Energy Dynamics Laboratory, Utah State University Research Foundation
2 Dept. of Civil and Environmental Engineering, Utah State University

randy.martin@usu.edu (435) 797-1585

International Specialty Annual Conference: Leapfrogging Opportunities for Air Quality Improvement
May 10-14, 2010
Xi’an, Shaanxi Province, China
Particulate Sampling Paradigms

- **Point Sampling**
 - Small volume
 - Fixed location
 - Long sample times (esp. filtered-based)
 - Low cost
 - The standard for policy, regulation, and management

- **Remote Sensing**
 - Large volume
 - Fixed or mobile
 - Short sample times
 - Higher cost
 - Must locally calibrate against point sensors
Aglite Air Quality Measurement System

- Air quality facility monitoring and emissions measurement system for particles and select gases
- Developed for USDA-Agricultural Research Service to characterize emissions from agricultural activities
- In-situ characterization of size-segregated particulate matter (PM$_{2.5}$, PM$_{10}$ and TSP)
Aglite Measurement System: Particles

- **Remote Sensor: Aglite Lidar** maps and tracks particle concentrations
 - 10 kHz pulsed Nd:YAG laser with 3 wavelengths (355/532/1064 nm)
 - Capable of scanning 280° in azimuth and -5° to 45° in elevation
 - Easily mobile, generator powered
 - Eye safe at 0.5 km

- **Point Sensors: Collocated point sensors** arrayed around the facility/source of interest
 - Optical Particle Counters (OPCs)
 - MiniVols (PM$_1$, PM$_{2.5}$, PM$_{10}$, TSP)
 - Chemical characterization (insitu & post-test)

- **Lidar is calibrated to local PM characteristics** using point sensors at an upwind location
Facility Emissions Calculations

- **Mass balance approach to Lidar data**
 - Lidar creates a virtual box around the source/area of interest
 \[\text{Out} - \text{In} = \text{Facility emission} \]

- **Inverse modeling**
 - \(\text{PM}_{\text{Downwind}} - \text{PM}_{\text{Upwind}} = \text{measured facility-produced PM levels} \)
 - Run ISCST3 and AERMOD (former and current EPA recommended air dispersion models) with an estimated emission rate

\[E_{\text{derived}} = E_{\text{seed}} \left(\frac{C_{\text{measured}}}{C_{\text{modeled}}} \right) \]
Field Experience History

- **2005**
 - Hog farm near Ames, IA
 - Dairy farm in Cache Valley, UT

- **2006**
 - Two non-agriculture sites

- **2007**
 - Fall tillage sequences (CMP vs. Conventional) near Los Banos, CA

- **2008**
 - Spring tillage sequences (CMP vs. Conventional) near Hanford, CA
 - Dairy farm near Hanford, CA

- **2009**
 - Two non-agriculture sites
 - Successful creation of time resolved, 2-D and 3-D, size-fractionated (TSP, PM\(_{10}\), PM\(_{2.5}\), PM\(_{1}\)) concentration maps, with on-site calibration. Derived emission rates generally agree well with available literature values.
Successful Strategies

- Characterization of local meteorology

 We didn’t have local met and didn’t know the predictions would be bad

- Deployment of a small, temporary meteorological station with cellular based communication

- Data provide a sense of directional/diurnal reliability

 - Essential for successful deployment of instruments

- Comparison of forecasts vs. observed

 - Especially important for intermittent activities

Almond orchard, San Joaquin Valley, CA
Successful Strategies

Point sensor placement
- Don’t place upwind sensors too close – may still be impacted
- Don’t place downwind sensors too close – may be overloaded
- Avoid potential plume edge effects
- Collocated OPC with filter-based samplers helps to identify and quantify potential contamination
 - Data quality check
 - Especially helpful at upwind locations
Successful Strategies

- **Lidar sampling**
 - Safety always 1st (humans and animals)
 - Area topography (‘shadow effects’)
 - Line-of-sight access to facility and several point sampler locations
 - Stay away from hard targets
 - Interference sometimes hard to see during sampling
 - Erratic large values likely due to scatter from the calibration tower
 -- need to be aware of possible aiming alignment limitations
Successful Strategies

General

- Ideal site and conditions are difficult (impossible) to find in the real world
- Potential confounding activities
 - Minimize as much as possible
 - Record any sources/activities that might impact sampling
- Record keeping
 - Detail-oriented field notebook
 - Pictures!
Leapfrogging…..to Conclusions

- Combined remote sensing and point sensors form EDL/USU’s Aglite Measurement System successfully able to quantify particulate (and select gaseous compounds) concentrations and emissions
 - Advancing data fusion techniques for remote and point sensors
 - Capable of providing high spatial and temporally resolved PM concentration maps and plume tracking
 - “whole facility” and moderate urban scales

- Successful sampling strategies for field campaigns learned through experience include:
 - Characterization of local meteorology and its predictability
 - Placement of point sensors to prevent contamination and overloading
 - Positioning of the lidar & beam plane for safety hard target interferences
 - Awareness of potential confounding sources
 - Usefulness of photographic and written observational data
Thank you. Questions?

Acknowledgments

The Aglite Program was developed under USDA Agreement Number 58-3625-4-121 with valuable direction from Dr. Jerry Hatfield, the Director of the National Laboratory for Agriculture and the Environment in Ames, IA.