Bioaerosol Characteristics in South China: Contributions of Fungi Spores to Ambient Aerosol in a Tropical Rainforest

Guenter Engling

Department of Biomedical Engineering and Environmental Sciences
National Tsing Hua University
Hsinchu, Taiwan

Ting Zhang, Chuen-Yu Chan, Xuefang Sang, Zhisheng Zhang

School of Environmental Science and Engineering
Sun Yat-Sen University
Guangzhou, China
Introduction

Background, Motivation & Objectives
1. Bioaerosol – What is it and why study it?

- Various kinds of bioaerosols can be found in ambient air, such as fungi, bacteria, mosses and fern spores, viruses, pollen, algae and plant as well as animal debris

- Bioaerosols are ubiquitous in the atmosphere and play important roles in atmospheric chemical and physical processes, climate forcing, biological systems and public health

- Bioaerosol contributions to the aerosol budget are significant on a global scale

2. Research Objectives

- Investigation of bioaerosol characteristics in a tropical region of South China

- Quantification of molecular source tracers for primary biogenic aerosol

- Estimation of fungi spore contributions to ambient aerosol
Source Apportionment by Molecular Tracers
Sources + Selected Products/Tracers

Molecular Tracer/Marker Methods

“Compounds with unique properties that by their pure existence allow for a conclusion about their sources or formation.” (Rudich et al., Ann. Rev. Phys. Chem., 2007)

- Specific emission from one source type
- Conservation of tracers (i.e., sufficient stability during atmospheric lifetime of tracer species)
- Availability of sensitive and accurate analytical methods

Tracer Examples:

- Glycerol
- Erythritol
- Xylitol
- Mannitol
- Xylose
- Glucose
- Levoglucosan
- Methyl tetrols
- Fungi Spores
- Biomass Burning
- Isoprene SOA
METHODOLOGY
Jianfeng Mountain
- 18°40' N, 108°49' E
- Tropical virgin rain forest
- National Reserve Park
- Located 115 km from Sanya
- Altitude: 820m asl.
Tracer Analysis: HPAEC-PAD Method

High Performance Anion Exchange Chromatography (HPAEC)

- Alkaline eluent (NaOH) converts carbohydrates and polyols to their anionic form
- Ion chromatographic (IC) separation of aqueous samples
- Electrochemical Detection: Pulsed Amperometric Detection (PAD)

Advantages:

- Filter extraction with water
- No chemical derivatization necessary
- Highly selective + sensitive
- Simple and fast operation

Engling et al., AE, 2006; Iinuma et al., AE, 2009
Bioaerosol Characteristics

Fungi Spores in Ambient Aerosol in Tropical South China
Bioaerosol Characteristics
Fungi Tracer Concentrations at Jianfeng Mountain

Arabitol concentrations in PM10 (ng/m³)

Arabitol concentrations in PMcoarse (ng/m³)

Zhang et al., ERL, 2010
Bioaerosol Characteristics
Fungi Tracer Concentrations at Jianfeng Mountain

![Graph showing Mannitol concentrations in PM10 and PM2.5 over time]

\[y = 0.9692x - 15.342 \]
\[R^2 = 0.9865 \]
Bioaerosol Characteristics
Fungi Tracer Concentrations at Jianfeng Mountain

\[y = 1.5472x + 3.3429 \]
\[R^2 = 0.8862 \]
Bioaerosol Characteristics
Fungi Tracer Measurements

Arabitol and Mannitol Concentrations at Various Locations

<table>
<thead>
<tr>
<th>Region</th>
<th>Season</th>
<th>Particle size</th>
<th>Arabitol (ng m⁻³)</th>
<th>Mannitol (ng m⁻³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JFL (China)</td>
<td>Spring</td>
<td>PM₂.₅</td>
<td>7</td>
<td>16</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₁₀</td>
<td>44 (96 max)</td>
<td>71 (160 max)</td>
<td></td>
</tr>
<tr>
<td>Balbina (Brazil)</td>
<td>July</td>
<td>PM₂.₅</td>
<td>13.8</td>
<td>15.2</td>
<td>Graham et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₂.₅-₁₀</td>
<td>41.7</td>
<td>53.3</td>
<td></td>
</tr>
<tr>
<td>Rondônia (Brazil)</td>
<td>October</td>
<td>PM₂.₅ (Pasture)</td>
<td>19.5</td>
<td>26.3</td>
<td>Graham et al., 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₂.₅ (Forest)</td>
<td>19</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>Jülich (Germany)</td>
<td>July</td>
<td>PM₂.₅</td>
<td>15.2</td>
<td>13.5</td>
<td>Kourtchev et al., 2008</td>
</tr>
<tr>
<td>Ghent (Belgium)</td>
<td>Summer</td>
<td>PM₁₀</td>
<td>105</td>
<td>97</td>
<td>Pashynska et al., 2002</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>PM₁₀</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>K-puszta (Hungary)</td>
<td>Summer</td>
<td>PM₂.₅</td>
<td>4.8</td>
<td>5.3</td>
<td>Ion et al., 2005</td>
</tr>
<tr>
<td>California (USA)</td>
<td>September</td>
<td>PM₁₀</td>
<td>7.6</td>
<td>8.8</td>
<td>Cahill et al., 2006</td>
</tr>
<tr>
<td>Averio (Portugal)</td>
<td>Summer</td>
<td>PM₂.₅</td>
<td>5.2</td>
<td>7.8</td>
<td>Pio et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₂.₅-₁₀</td>
<td>16.7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Elverum (Norway)</td>
<td>Winter</td>
<td>PM₂.₅</td>
<td>4.3</td>
<td>2.8</td>
<td>Yttri et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>PM₁₀</td>
<td>5.3</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₂.₅</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₁₀</td>
<td>20</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Melpitz (Germany)</td>
<td>Spring</td>
<td>PM₁₀</td>
<td>4.2-35</td>
<td>1.6-23</td>
<td>Carvalho et al., 2003</td>
</tr>
<tr>
<td>Hyytiala (Finland)</td>
<td>August</td>
<td>PM₁₀</td>
<td>1.4-241</td>
<td>< 0.5-88</td>
<td></td>
</tr>
</tbody>
</table>
Fungi Tracer Measurements

Arabitol and Mannitol Concentrations at Various Locations

<table>
<thead>
<tr>
<th>Region</th>
<th>Season</th>
<th>Particle size</th>
<th>Arabitol (ng m⁻³)</th>
<th>Mannitol (ng m⁻³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JFL (China)</td>
<td>Spring</td>
<td>PM₂₅, PM₁₀</td>
<td>7</td>
<td>16</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44 (96 max)</td>
<td>71 (100 max)</td>
<td></td>
</tr>
<tr>
<td>Balbina (Brazil)</td>
<td>July</td>
<td>PM₂₅</td>
<td>13.8</td>
<td>15.2</td>
<td>Graham et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₂₅, PM₂₅₋₁₀</td>
<td>41.7</td>
<td>53.3</td>
<td></td>
</tr>
<tr>
<td>Rondônia (Brazil)</td>
<td>October</td>
<td>PM₂₅ (Pasture)</td>
<td>19.5</td>
<td>26.3</td>
<td>Graham et al., 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM₂₅ (Forest)</td>
<td>19</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>Jülich (Germany)</td>
<td></td>
<td>PM₁₀</td>
<td>105</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Ghent (Belgium)</td>
<td>Summer</td>
<td>PM₂₅</td>
<td>5.2</td>
<td>7.8</td>
<td>Pio et al., 2008</td>
</tr>
<tr>
<td>K-puszta (Hungary)</td>
<td></td>
<td>PM₂₅</td>
<td>16.7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>California (USA)</td>
<td>Summer</td>
<td>PM₂₅</td>
<td>5.8</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Elverum (Norway)</td>
<td>Winter</td>
<td>PM₂₅</td>
<td>4.3</td>
<td>2.8</td>
<td>Yttri et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>PM₂₅</td>
<td>5.3</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Melpitz (Germany)</td>
<td>Spring</td>
<td>PM₁₀</td>
<td>4.2-35</td>
<td>1.6-23</td>
<td>Carvalho et al., 2003</td>
</tr>
<tr>
<td>Hyytiälä (Finland)</td>
<td>August</td>
<td>PM₁₀</td>
<td>1.4-241</td>
<td>< 0.5-88</td>
<td></td>
</tr>
</tbody>
</table>

Relative Contributions of Fungi to Ambient Aerosol

- **PM₁₀**: 8% (2 – 18%)
- **OC₁₀**: 12% (5 – 26%)
Characteristics of Fungi Spore Tracers

- The average concentrations of arabitol and mannitol in PM_{10} were rather high (44 and 71 ng/m^{3}).
- Good correlation of tracers with each other, especially in coarse-mode particles (PM_{2.5-10}).
- Tracer levels in PM_{10} show dependence on relative humidity, temperature and amount of rainfall.

Contributions of Fungi Spores to Ambient Aerosol

- Estimations of source contributions using the measured tracer and OC (and PM) concentrations.
- High contributions of fungal spores to ambient PM_{10} mass and to OC (max of 18% and 26%).

Future/On-going Research

- Investigation of fungi spore chemical composition as a function of location and ambient (meteorological) conditions.
- Determination of fungi tracer "emission factors" for subtropical and tropical areas.
- Comparison of molecular tracer methods with traditional culture techniques and DNA sequencing.
- Exploration of tracers for additional bioaerosol species (e.g., bacteria).
ACKNOWLEDGEMENTS

- Academia Sinica
 - Dr. Shaw Liu
 - Yi-Chih Wu, Rong-Yi Yan

- Other Collaborators
 - Dr. Y.D. Li
 - Dr. Y.S. Li