Application and Evaluation of CMAQ for Modeling Air Pollutants in Shanghai

Ping Liu, Weiqi Wang, Hongru Feng
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Qian Wang, Qingyan Fu
Shanghai Environmental Monitoring Center, Shanghai, China
Presentation Outline

- Background
- Model configurations
- Model performance analyses
 - Simulated meteorological fields
 - Simulated concentrations of major air pollutants
 - Process analysis of major air pollutants
- Summary and future work
Background and Motivation

- Air pollution is a big problem in large cities and city clusters in China
- Coordinated observations were taken in Shanghai during 2009, which needs coordinated modeling work as well
- Ensemble air quality forecasting system has been in operation in Shanghai, and needs continuous development
Model Configurations

- **Model:** CMAQ v4.6
- **Domain (4 nested):** 81 km → 27 km → 9 km → 3 km
 - 3 km: 88×73 horizontal grid cells
 - 14 layers from surface to the tropopause
- **Meteorology:** MM5 v3.7
- **Emissions:** INTEX-B 2006 (0.5° × 0.5°)
 - Shanghai Emission 2006 (1km×1km)
- **Initial and boundary conditions (ICs/BCs):**
 - Domain 1: clean IC/BCs
 - Domain 2-4: extract from the coarser domain
- **Gas-phase mechanism:** CB05
- **Aerosol module:** AERO4
- **Simulation Period:** January 17 ~ February 17, 2009

CMAQ: the Community Multiscale Air Quality Modeling system
MM5: the fifth-generation Penn State/NCAR Mesoscale Model
CB05: the Carbon Bond Mechanism 2005
Four Nested Domains

D1: East Asia
D2: Southeastern coastal area
D3: Lower and middle reaches of Yangtze river
D4: Shanghai area
Simulated Meteorological Fields (1)

Temperature

Hongqiao Airport

![Temperature Graph](Hongqiao_Airport_Graph)

Pudong Airport

![Temperature Graph](Pudong_Airport_Graph)
Simulated Meteorological Fields (2)

Relative Humidity

Hongqiao Airport

- Observed (red dots)
- Simulated (blue line)

Pudong Airport

- Observed (red dots)
- Simulated (blue line)
Simulated Meteorological Fields (3)

Wind

Hongqiao Airport

Pudong Airport
Statistics of Meteorological Simulations

<table>
<thead>
<tr>
<th></th>
<th>Temperature</th>
<th>Relative humidity</th>
<th>Wind speed</th>
<th>Wind direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeanObs</td>
<td>8.9</td>
<td>70.0</td>
<td>4.7</td>
<td>171.2</td>
</tr>
<tr>
<td>MeanMod</td>
<td>8.1</td>
<td>74.4</td>
<td>4.1</td>
<td>172.6</td>
</tr>
<tr>
<td>Number</td>
<td>829</td>
<td>964</td>
<td>927</td>
<td>756</td>
</tr>
<tr>
<td>corr</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>MB</td>
<td>-0.8</td>
<td>4.5</td>
<td>-0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>-8.4</td>
<td>6.4</td>
<td>-12.1</td>
<td>0.8</td>
</tr>
<tr>
<td>NME (%)</td>
<td>23.4</td>
<td>15.5</td>
<td>30.5</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Spatial Distributions of Major Air Pollutants

2009 Jan. 22nd – Feb. 17th, 26-day mean of hourly data

\begin{itemize}
 \item PM\textsubscript{10}
 \item PM\textsubscript{2.5}
 \item SO\textsubscript{2}
 \item NO\textsubscript{2}
\end{itemize}
Observation Sites
Hourly Variation of PM$_{10}$ and PM$_{2.5}$

Jingan, Urban site

Dianshan Lake, Rural site
Hourly Variation of SO_2

SO_2

Jingan, Urban site

Dianshan Lake, Rural site

$$C_{\mu g/m^3} = \frac{C_{\text{ppb}} \times M_a}{24.45}$$

$T = 298 \text{ K}, P = 1.01325 \times 10^5 \text{ Pa (N M}^{-2}), 1 \text{ ppb SO}_2 = 2.61 \ \mu g \text{ m}^{-3}$
Hourly Variation of NO\textsubscript{2}

Jingan, Urban site

Dianshan Lake, Rural site

\[
C_{\mu g m^{-3}} = \frac{C_{ppb} \times M_q}{24.45}
\]

T = 298 K, P = 1.01325 \times 10^5 Pa (N M^{-2}), 1 ppb NO\textsubscript{2} = 3.63 \mu g m^{-3}
Hourly Variation of O_3

O_3

Jingan, Urban site

Dianshan Lake, Rural site

$$C_{\mu g m^{-3}} = \frac{C_{ppb} \times M_q}{24.45}$$

$T = 298 \text{ K}$, $P = 1.01325 \times 10^5 \text{ Pa (N M}^{-2})$, $1 \text{ ppb SO}_2 = 3.48 \mu g m^{-3}$
Statistics of Major Air Pollutant Simulation

<table>
<thead>
<tr>
<th></th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>NO$_2$</th>
<th>O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeanObs</td>
<td>82.05</td>
<td>51.78</td>
<td>39.89</td>
<td>48.20</td>
<td>53.68</td>
</tr>
<tr>
<td>MeanMod</td>
<td>80.67</td>
<td>52.51</td>
<td>47.70</td>
<td>65.33</td>
<td>60.73</td>
</tr>
<tr>
<td>Number</td>
<td>5772</td>
<td>969</td>
<td>5785</td>
<td>5838</td>
<td>4636</td>
</tr>
<tr>
<td>corr</td>
<td>0.25</td>
<td>0.18</td>
<td>0.19</td>
<td>0.41</td>
<td>0.50</td>
</tr>
<tr>
<td>MB</td>
<td>-1.38</td>
<td>0.73</td>
<td>7.82</td>
<td>17.13</td>
<td>7.05</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>-1.69</td>
<td>1.4</td>
<td>19.6</td>
<td>35.53</td>
<td>13.13</td>
</tr>
<tr>
<td>NME (%)</td>
<td>77.64</td>
<td>85.78</td>
<td>81.81</td>
<td>68.61</td>
<td>65.63</td>
</tr>
</tbody>
</table>

Statistics are all based on hourly data.
Process Analysis: \(\text{SO}_2 \)

Daily-average change in \(\text{SO}_2 \) due to each process

Jingan, Urban site

Dianshan Lake, Rural site
Process Analysis: NO₂

Daily-average change in NO₂ due to each process

Jingan, Urban site

Dianshan Lake, Rural site
Summary and Future Work

- **For this study**, the MM5 model can relatively well simulate temperature, relative humidity, and wind; the CMAQ model can simulate PM\textsubscript{10}, PM\textsubscript{2.5}, SO\textsubscript{2}, NO\textsubscript{2}, and O\textsubscript{3} with relatively low biases, but has limitations in predicting hourly variations of those pollutants.

- **Emissions** are the major contributor to the increases of PM\textsubscript{10}, SO\textsubscript{2}, and NO\textsubscript{2} at urban site; transport is the major contributor to the changes of those pollutants at rural site.

- **Model biases** may due to the uncertainties in meteorological simulations (e.g., cold bias of temperature) and emissions (e.g., uncounted emission such as firecrackers and fireworks).

- **Future Work:**
 - Model comparisons with satellite data;
 - Model comparisons with observed trace gases and PM composition;
 - Column process analyses.
Acknowledgements

- Funded by Science and Technology Commission of Shanghai Municipality (08dz0581206)
- Weihua Chen, Naiqiang Yan, Zan Qu, and Jinping Jia, SESE of Shanghai Jiao Tong University, for all helps in this work