Chemical Characteristics of Cloudwater and Precipitation at a Representative High-elevation Site in South China: Transboundary Transport of Different Sources

Sun Minghu, Wang Yan, Wang Tao, Wang Wenxing
Shandong University
Outline

1. Objective of this study
2. Samples collection and analysis
3. Chemical compositions
4. Source and transboundary transport
5. Summary
Why Mt. Heng?
(112°42’ E, 27°18’ N, 1269m)

- Within the region of the most acidic rain in southern China
- Frequent clouds/fogs and precipitation
- Good location to study long-range transport

Sample collection and analysis

- **Period**: 2009.2.28-5.29
- **Collector**: CASCC-2
- **pH, EC**: MODEL 6350M
- **Water-soluble ions**: IC-2500(DIONEX)
Acidic precipitation

The precipitation were mostly acidic.

pH range: 3.44~6.91
VWM pH = 4.35
Acidic cloud/fog water

Frequent cloud/fog events occurred.
- 194 samples for 24 events.

The cloud water were mostly acidic.

pH range: 2.91~6.91
VWM pH = 3.80
Chemical composition
Temporal variation of ions

- **Sulfate (SO$_4^{2-}$)**
 - March: 389, 76
 - April: 365, 64
 - May: 357

- **Nitrate (NO$_3^-$)**
 - March: 70.85
 - April: 8.41
 - May: 59.96

- **Calcium (Ca$^{2+}$)**
 - March: 59.96
 - April: 26.06
 - May: 158

- **Ammonium (NH$_4^+$)**
 - March: 21
 - April: 8
 - May: 3/20, 4/01, 4/11, 4/17, 4/29, 5/12, 5/16, 5/29

- **Chloride (Cl$^-$)**
 - March: 21
 - April: 8
 - May: 3/20, 4/01, 4/11, 4/17, 4/29, 5/12, 5/16, 5/29

- **Sulfate (SO$_4^{2-}$)**
 - March: 389
 - April: 76
 - May: 357

- **Calcium (Ca$^{2+}$)**
 - March: 59.96
 - April: 26.06
 - May: 158

- **Ammonium (NH$_4^+$)**
 - March: 21
 - April: 8
 - May: 3/20, 4/01, 4/11, 4/17, 4/29, 5/12, 5/16, 5/29

- **Chloride (Cl$^-$)**
 - March: 21
 - April: 8
 - May: 3/20, 4/01, 4/11, 4/17, 4/29, 5/12, 5/16, 5/29
Relationships between ions

Cloudwater

γ=0.934

γ=0.978

γ=0.970

Precipitation

γ=0.900

γ=0.931

γ=0.899
Ionic sources

\[
\%SSF = 100 \left(\frac{X/Na^+}{X/Na^+} \right)_{\text{marine}}/ \left(\frac{X/Na^+}{X/Na^+} \right)_{\text{rain-cloud}} \\
\%CF = 100(\frac{X/Ca^{2+}}{X/Ca^{2+}})_{\text{soil}}/ \left(\frac{X/Ca^{2+}}{X/Ca^{2+}} \right)_{\text{rain-cloud}} \\
\%AF = 100 - \%SSF - \%CF
\]

Ion Concentration (μeq/l)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Sea salt (%)</th>
<th>Crust (%)</th>
<th>Anthropogenic source (%)</th>
<th>Sea salt (%)</th>
<th>Crust (%)</th>
<th>Anthropogenic source (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>2.1</td>
<td>0.1</td>
<td>97.8</td>
<td>1.4</td>
<td>0.3</td>
<td>98.3</td>
</tr>
<tr>
<td>Nitrate</td>
<td>--</td>
<td>0.1</td>
<td>99.9</td>
<td>--</td>
<td>0.1</td>
<td>99.9</td>
</tr>
<tr>
<td>Potassium</td>
<td>8.4</td>
<td>91.6</td>
<td>--</td>
<td>4.3</td>
<td>95.7</td>
<td>--</td>
</tr>
<tr>
<td>Calcium</td>
<td>4.9</td>
<td>95.1</td>
<td>--</td>
<td>1.4</td>
<td>98.6</td>
<td>--</td>
</tr>
<tr>
<td>Magnesium</td>
<td>21.4</td>
<td>78.6</td>
<td>--</td>
<td>43.3</td>
<td>56.7</td>
<td>--</td>
</tr>
</tbody>
</table>
Air-mass patterns

HYSPLIT4.8 (NOAA/ARL) 5 day 3-D backward Trajectory
Ending point: 1300 m a.s.l. Cluster analysis with Ward’s method
Summary

• Most of the cloudwater and precipitation events were acidic. Compared with the situation in 1989, in cloudwater the acidity became stronger, but this did not appear in precipitation.

• About 70% ions were SO_4^{2-}, NH_4^+, NO_3^-, and they were mainly from anthropogenic sources. Otherwise organic acids were additional contributors to the acidity.

• Regional transports affected chemical compositions in cloudwater greatly rather than local sources did and this regional transports were associated with ones from East and South China.
Acknowledgements

• Thanks for all team members’ assistance to this study, specially for Mount Heng Meteorological Station and Prof. Fan Shaojia from SYSU.

• This study is supported by 973 China National Basic Research Program under grant 2005CB422203.
Thank you!