Association of particulate air pollution with heart rate variability in Beijing taxi drivers

Shaowei Wu, Furong Deng, Jie Niu, Qinsheng Huang, Youcheng Liu, and Xinbiao Guo

Peking University School of Public Health, China

guoxb@bjmu.edu.cn
Motor Vehicles in Beijing

- The increasing trend of motor vehicles in Beijing from 1949-2009
Study Subjects

- Inclusion criteria:
 - nonsmoking;
 - healthy;
 - body mass index (BMI) \(\leq 30 \);
 - normal blood pressure, normal resting ECG and normal blood test results;
 - daytime taxicab driving hours;
 - employment as a taxi driver for at least 1 year
Study Protocol

- Panel study design:
 - Continuous personal exposure to PM$_{2.5}$ and ambulatory ECG monitoring
 - Conducted on each subject during a 12-hr work shift (09:00-21:00)
 - In 3 time periods: before, during, and after the Beijing 2008 Olympic Games, respectively
 - Only on weekdays (from Monday to Friday)
Personal Exposure Monitoring

- $\text{PM}_{2.5}$:
 - Real-time concentrations
 - Mass concentrations
- Other exposure variables:
 - $\text{CO}/\text{NO}_2/\text{NO}$
 - Temperature/relative humidity
HRV Measurements

- Holter recorder:
 - Each subject wore the Holter recorder for 12 hr
 - 09:00-21:00

- Data processing:
 - HRV indices were calculated in standard 5-min segments throughout the entire recording
 - SDNN, LF power, HF power
Statistical Analysis

- Raw HRV indices comparison:
 - One-way analysis of variance (ANOVA)
- Model fits:
 - Mixed-effects models: overall & subject-specific
 - Loess smoother: dose-response relationship
 - SAS software (version 9.1)
Mixed-Effects Models

- **Fixed effects:**
 - Real-time PM$_{2.5}$ moving average (5 min to 4 hr)
 - Adjusted for: age, time of day, log$_{10}$-HR, temperature & relative humidity

- **Random effects:**
 - Subject, day of the year
 - Accounting for autocorrelation of repeated measurements within-subject and within-day
Characteristics on Subjects

- **Subjects:**
 - $n=11$, 6 were females
 - Mean age: 35.5 years
 - Range: 27-41 years
 - Employment as a taxi driver: 6.0±3.4 years
 - BMI: 26.1±3.5
 - Normal: BP, resting ECG, blood lipids
Exposure Results

Table 1. Daily averages of exposure variables inside the taxicab

<table>
<thead>
<tr>
<th>Variable</th>
<th>Period</th>
<th>Percentiles</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>During</td>
<td>After</td>
</tr>
<tr>
<td>PM$_{2.5}$ real-time (µg/m3)</td>
<td>95.4±58.6</td>
<td>39.5±25.2</td>
<td>64.0±80.3</td>
</tr>
<tr>
<td>PM$_{2.5}$ mass (µg/m3)</td>
<td>105.5±44.1</td>
<td>45.2±27.0</td>
<td>80.4±72.5</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>3.6±1.4</td>
<td>2.8±1.0</td>
<td>2.7±0.7</td>
</tr>
<tr>
<td>NO$_2$ (ppb)</td>
<td>36.4±12.3</td>
<td>30.3±12.2</td>
<td>37.1±17.0</td>
</tr>
<tr>
<td>NO (ppb)</td>
<td>176.1±84.8</td>
<td>156.0±77.2</td>
<td>268.0±55.5</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td>30.0±4.4</td>
<td>28.8±2.0</td>
<td>25.0±2.2</td>
</tr>
<tr>
<td>RH (%)</td>
<td>38.8±9.5</td>
<td>41.7±6.6</td>
<td>24.8±5.8</td>
</tr>
</tbody>
</table>
Distribution of HRV

Table 2. Distribution of 5-min HRV indices by time period

<table>
<thead>
<tr>
<th>Variable/Period</th>
<th>n</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-min SDNN (msec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>1320</td>
<td>34</td>
<td>44</td>
<td>54</td>
<td>78</td>
</tr>
<tr>
<td>During</td>
<td>1366</td>
<td>39</td>
<td>49</td>
<td>58</td>
<td>76</td>
</tr>
<tr>
<td>After</td>
<td>1309</td>
<td>35</td>
<td>44</td>
<td>54</td>
<td>72</td>
</tr>
<tr>
<td>5-min LF power (msec²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>1298</td>
<td>304.7</td>
<td>507.6</td>
<td>830.8</td>
<td>1506.2</td>
</tr>
<tr>
<td>During</td>
<td>1360</td>
<td>353.5</td>
<td>606.2</td>
<td>888.6</td>
<td>1526.2</td>
</tr>
<tr>
<td>After</td>
<td>1287</td>
<td>310.6</td>
<td>500.1</td>
<td>803.1</td>
<td>1509.5</td>
</tr>
<tr>
<td>5-min HF power (msec²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>1298</td>
<td>52.1</td>
<td>97.9</td>
<td>185.1</td>
<td>375.6</td>
</tr>
<tr>
<td>During</td>
<td>1360</td>
<td>81.9</td>
<td>139.0</td>
<td>222.8</td>
<td>420.3</td>
</tr>
<tr>
<td>After</td>
<td>1287</td>
<td>60.9</td>
<td>126.4</td>
<td>228.7</td>
<td>425.6</td>
</tr>
</tbody>
</table>
Percent Changes in HRV

Figure 1. Percent changes (95% CIs) in 5-min HRV indices associated with an IQR (69.5 μg/m³) increase of the PM$_{2.5}$ for moving averages from 5 min to 4 hr.
Figure 2. Subject-specific effect estimates for 5-min HRV indices associated with an IQR (69.5 μg/m³) increase in the 30-min PM$_{2.5}$ moving average.
Conclusions

- Raw HRV indices comparison:
 - Low PM$_{2.5}$ exposure period (during the Olympic Games) was associated with relatively high HRV
 - Higher PM$_{2.5}$ exposures (before and after the Olympic Games) were associated with relatively low HRV

- Model fits:
 - Marked changes in PM air pollution may lead to cardiac autonomic imbalance in young healthy individuals
 - Indicated by declines in several 5-min HRV indices

- Subject-specific effect estimates:
 - Several subjects had positive response in HRV under PM exposure
 - Factors affecting heterogeneity of responses to PM exposure need further study
Thank you for your attention!