Attached is a "beta" version of the FREZCHEM model that includes chloride, nitrate, sulfate, and bicarbonate-carbonate salts, and strong acid chemistry (FREZCHEM6.2). This folder includes a FORTRAN program listing (which you can download directly), a list of chemical species in the model (Table 1), instructions for model input, and an example of model output.

This model is very much a work in progress. I will be mainly adding new chemistries to the model in the next few years. I have not spent much time debugging the model or making it user-friendly. In addition, there are convergence problems, at times, with the model. My version of the model was created with Absoft's ProFortran for the Macintosh. Porting this code to another fortran compiler is always problematic. If you have problems, contact me via e-mail. Indicate the FREZCHEM version you are using (e.g., FREZCHEM6.2) and your model input.

The model is an equilibrium chemical thermodynamic model, meaning it will always select the most stable minerals. There are a few minerals (e.g., aragonite and ikaite) that are always metastable with respect to other minerals (e.g., calcite). To explicitly include a metastable mineral in your calculations necessitates removing the stable mineral from the minerals database. This is most simply done by assigning the stable mineral an arbitrary high K_{sp}. See the comments at the end of the "Parameter" subroutine on how to do this. The # of the K_{sp} for a specific mineral is the same as the solid phase # in Table 1 (e.g., K_{52} is the solubility product for calcite). If you are using the model to calculate pH, then you should make sure that the initial solution is charge-balanced. Otherwise, the model will force a charge balance by changing the bicarbonate-carbonate or acid concentrations, which could lead to a serious error in calculated pH if the solution is badly charge-balanced. If necessary, force a charge-balance in the initial solution by changing a major constituent that minimizes the effect on pH (e.g., Na or Cl).

Table 1. A listing of chemical species in the FREZCHEM model (version 6.2).

A. Solution and Atmospheric Species

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na⁺(aq)</td>
<td>11</td>
<td>Cl⁻(aq)</td>
<td>21</td>
<td>CO₂(aq)</td>
</tr>
<tr>
<td>2</td>
<td>K⁺(aq)</td>
<td>12</td>
<td>SO₄²⁻(aq)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ca²⁺(aq)</td>
<td>13</td>
<td>OH⁻(aq)</td>
<td>23</td>
<td>HCl(g)</td>
</tr>
<tr>
<td>4</td>
<td>Mg²⁺(aq)</td>
<td>14</td>
<td>HCO₃⁻(aq)</td>
<td>24</td>
<td>CaCO₃°(aq)</td>
</tr>
<tr>
<td>5</td>
<td>H⁺(aq)</td>
<td>15</td>
<td>CO₃²⁻(aq)</td>
<td>25</td>
<td>MgCO₃°(aq)</td>
</tr>
<tr>
<td>6</td>
<td>MgOH⁺(aq)</td>
<td>16</td>
<td>HSO₄⁻(aq)</td>
<td>26</td>
<td>HNO₃(g)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>17</td>
<td>NO₃⁻(aq)</td>
<td>27</td>
<td>H₂SO₄(g)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td></td>
<td>28</td>
<td>H₂O(g)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>19</td>
<td></td>
<td>29</td>
<td>CO₂(g)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
<td></td>
<td>30</td>
<td>H₂O(l)</td>
</tr>
</tbody>
</table>

B. Solid Phase Species

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>H₂O(cr,I)</td>
<td>46</td>
<td>MgSO₄•K₂SO₄•6H₂O(cr)</td>
<td>61</td>
<td>CaMg(CO₃)₂(cr)</td>
</tr>
<tr>
<td>32</td>
<td>NaCl•2H₂O(cr)</td>
<td>47</td>
<td>Na₂SO₄•MgSO₄•4H₂O(cr)</td>
<td>62</td>
<td>Na₂CO₃•7H₂O(cr)</td>
</tr>
<tr>
<td>33</td>
<td>NaCl(cr)</td>
<td>48</td>
<td>CaSO₄•2H₂O(cr)</td>
<td>63</td>
<td>KHCO₃(cr)</td>
</tr>
<tr>
<td>34</td>
<td>KCl(cr)</td>
<td>49</td>
<td>CaSO₄(cr)</td>
<td>64</td>
<td>CaCO₃(cr, aragonite)</td>
</tr>
<tr>
<td>35</td>
<td>CaCl₂•6H₂O(cr)</td>
<td>50</td>
<td>MgSO₄•12H₂O(cr)</td>
<td>65</td>
<td>CaCO₃(cr, vaterite)</td>
</tr>
<tr>
<td>36</td>
<td>MgCl₂•6H₂O(cr)</td>
<td>51</td>
<td>Na₂SO₄•3K₂SO₄(cr)</td>
<td>66</td>
<td>HNO₃•3H₂O(cr)</td>
</tr>
<tr>
<td>37</td>
<td>MgCl₂•8H₂O(cr)</td>
<td>52</td>
<td>CaCO₃(cr, calcite)</td>
<td>67</td>
<td>KNO₃(cr)</td>
</tr>
<tr>
<td>38</td>
<td>MgCl₂•12H₂O(cr)</td>
<td>53</td>
<td>MgCO₃(cr)</td>
<td>68</td>
<td>NaNO₃(cr)</td>
</tr>
<tr>
<td>39</td>
<td>KMgCl₃•6H₂O(cr)</td>
<td>54</td>
<td>MgCO₃•3H₂O(cr)</td>
<td>69</td>
<td>HCl•3H₂O(cr)</td>
</tr>
<tr>
<td>40</td>
<td>CaCl₂•2MgCl₂•12H₂O(cr)</td>
<td>55</td>
<td>MgCO₃•5H₂O(cr)</td>
<td>70</td>
<td>H₂SO₄•6.5H₂O(cr)</td>
</tr>
<tr>
<td>41</td>
<td>Na₂SO₄•10H₂O(cr)</td>
<td>56</td>
<td>CaCO₃•6H₂O(cr)</td>
<td>71</td>
<td>H₂SO₄•4H₂O(cr)</td>
</tr>
<tr>
<td>42</td>
<td>Na₂SO₄(cr)</td>
<td>57</td>
<td>NaHCO₃(cr)</td>
<td>72</td>
<td>HCl•6H₂O(cr)</td>
</tr>
<tr>
<td>43</td>
<td>MgSO₄•6H₂O(cr)</td>
<td>58</td>
<td>Na₂CO₃•10H₂O(cr)</td>
<td>73</td>
<td>NaNO₃•Na₂SO₄•2H₂O(cr)</td>
</tr>
<tr>
<td>44</td>
<td>MgSO₄•7H₂O(cr)</td>
<td>59</td>
<td>NaHCO₃•Na₂CO₃•2H₂O(cr)</td>
<td>74</td>
<td>Na₃H(SO₄)₂(cr)</td>
</tr>
<tr>
<td>45</td>
<td>K₂SO₄(cr)</td>
<td>60</td>
<td>3MgCO₃•Mg(OH)₂•3H₂O(cr)</td>
<td>75</td>
<td>NaHSO₄•H₂O(cr)</td>
</tr>
</tbody>
</table>
Model Input (hit return after every entry).

Title: Any alphanumeric character up to 50 characters.

Freeze(1) or Evaporation(2) Scenario: Enter 1 or 2 depending on whether you want to simulate a temperature change (1) or evaporation (2). For evaluating a single point, enter "1".

Equilibrium(1) or Fractional(2) Crystallization: In equilibrium crystallization (1), precipitated solids are allowed to re-equilibrate with the solution phase as environmental conditions change. In fractional crystallization (2), precipitated solids are removed and not allowed to re-equilibrate with the solution phase as environmental conditions change.

Sodium (m/kg): Enter sodium molality (moles/kg(water)).

Potassium (m/kg): Enter potassium molality (moles/kg(water)).

Calcium (m/kg): Enter calcium molality (moles/kg(water)).

Magnesium (m/kg): Enter magnesium molality (moles/kg(water)).

Chloride (m/kg): Enter chloride molality (moles/kg(water)).

Sulfate (m/kg): Enter sulfate molality (moles/kg(water)).

Nitrate (m/kg): Enter nitrate molality (moles/kg(water)).

Carbonate Alkalinity: Enter as equivalents/kg(water). If alkalinity = 0.0, then you must enter 0.0. The latter will cause the model to skip all bicarbonate-carbonate, pH chemistries in the model.

 Initial pH: If alkalinity > 0.0, then the model will calculate pH, given an initial pH estimate that is specified here. If this estimate is far removed from the true pH, then the model may not converge.

CO₂(atm): If alkalinity > 0.0, then specify the concentration of CO₂(g) in atmospheres.

Acidity: Enter as equivalents/kg(water). This is the total hydrogen concentration, if known initially. Generally this is only known for strong acid solutions. For example, for a 1 molal H₂SO₄ solution, enter 2.00. Otherwise, enter 0.0. The equations used to calculate pH for the alkalinity and acidity cases are incompatible. So, a specification of either carbonate alkalinity or acidity requires that the other variable be assigned a value of 0.00. This will channel the calculations to the proper algorithm.

HCl(atm): If the HCl atmospheric concentration is known, then specify here. Otherwise, enter 0.0. If you specify 0.0, then the model will calculate HCl(atm). Note that if you specify HCl(atm) or the other acids below, then these properties override the total acidity specification (see above). That is, the solution is equilibrated with the atmospheric concentration. Note, you can, if desired, specify atmospheric concentrations for some acids (e.g., HCl and HNO₃) and leave other acid partial pressure unspecified (e.g., H₂SO₄ = 0.0).
HNO$_3$(atm): If the HNO$_3$ atmospheric concentration is known, then specify here. Otherwise, enter 0.0.

H$_2$SO$_4$(atm): If the H$_2$SO$_4$ atmospheric concentration is known, then specify here. Otherwise, enter 0.0.

Initial Temperature(K): Enter the temperature in absolute degrees (K) for start of simulation (e.g., 298.15).

For Temperature Change Pathway:

- **Final Temperature(K):** Enter final temperature of simulation (e.g., 273.15).
- **Temperature Decrement(K):** The temperature interval between simulations (e.g. 5). For the above temperature designations, the model would calculate equilibrium starting at 298.15 K and ending at 273.15 K at 5 K intervals. If you want to change the decrement in a run (e.g., to reduce the step size near an equilibrium), see the comments near the end of the main program.

For Evaporation Pathway:

- **Initial Water (g):** Normally enter "1000" at this point. The standard weight basis of the model is 1000 g water plus associated salts. In you enter 100, instead of 1000, the initial ion concentrations, specified above, will be multiplied by 10.0 (1000/100) as the starting compositions for calculations. This feature of the model is useful in precisely locating where minerals start to precipitate during the evaporation process without having to calculate every small change between 1000 g and 1 g.

- **Final Water (g):** Enter the final amount of water that you want to remain in the system (e.g., 100).

- **Water Decrement (g):** Enter the water decrement for simulations (e.g., 50 g). Specifying initial = 1000, final = 100, and decrement = 50 would result in calculations at 1000g, 950g,100g. If you want to change the decrement in a run (e.g., to reduce the step size near an equilibrium), see the comments near the end of the main program.
Model Output (Table 2).

"Ion.Str." is the ionic strength of the equilibrium solution. "AH2O" is the activity of liquid water in the equilibrium solution. "Phi" is the osmotic coefficient of the equilibrium solution. "H2O(g)" is the amount of water remaining as liquid. "Ice" is the amount of water that is present as ice. The mass basis for calculation in the model is 1.0 kg of water (except for evaporation); therefore, the water in liquid water + ice + hydrated salts should always sum to 1.0 kg. The data under "Initial Conc." are the input concentrations. "Final Conc." are the equilibrium concentrations. Act. coef. (activity coefficient) and activity are self-explanatory. Moles are the # of moles in the solution or solid phase. For the major constituents, the "Mass Balance" column should agree with the input column ("Initial Conc."); this is the best check on the internal consistency of the calculations. The "Accum Moles" in the solids section are the net # of moles of that solid that have precipitated. For equilibrium crystallization, accum. moles = moles(solid). For fractional crystallization accum. moles ≥ moles (solids); in this case, moles represent the solids that have precipitated in the last interval (e.g., between 15 and 10 °C), while accum. moles represent the total precipitate (e.g., between 25 and 10 °C).

Table 2 is an example where we specified a 1.0 m NaCl plus 1.0 m H2SO4 solution at 253.15 K. Under these conditions, about 46% of the water is present as ice and mirabalite is also precipitating. The calculated pH is −0.745. The solution at this temperature is considerably undersaturated with respect to hydrohalite (NaCl•2H2O) and H2SO4•6.5H2O.
Table 2. Freezing of a strong acid solution

<table>
<thead>
<tr>
<th>Temp(K)</th>
<th>Ion.Str.</th>
<th>AH2O</th>
<th>Phi</th>
<th>H2O(g)</th>
<th>Ice(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>253.15</td>
<td>4.7929</td>
<td>0.82303</td>
<td>1.4140</td>
<td>477.75</td>
<td>463.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
<th>Initial</th>
<th>Final</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>1.0000</td>
<td>0.71918</td>
<td>0.54143</td>
</tr>
<tr>
<td>H</td>
<td>2.0000</td>
<td>5.4269</td>
<td>1.6231</td>
</tr>
<tr>
<td>SO4</td>
<td>1.0000</td>
<td>0.64680</td>
<td>0.18621E-01</td>
</tr>
<tr>
<td>OH</td>
<td>0.38374E-14</td>
<td>0.38374E-14</td>
<td>0.17220</td>
</tr>
<tr>
<td>HSO4</td>
<td>0.00000</td>
<td>0.75935</td>
<td>2.7742</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Moles</th>
<th>Equil.</th>
<th>Accum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE</td>
<td>25.707</td>
<td>0.82304</td>
<td>25.707</td>
</tr>
<tr>
<td>NaCl.2H2O</td>
<td>0.00000</td>
<td>8.3944</td>
<td>0.00000</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.00000</td>
<td>23.791</td>
<td>0.00000</td>
</tr>
<tr>
<td>KCl</td>
<td>0.00000</td>
<td>1.6877</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgCl2.6H2O</td>
<td>0.00000</td>
<td>908.17</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgCl2.8H2O</td>
<td>0.00000</td>
<td>2765.7</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgCl2.12H2O</td>
<td>0.00000</td>
<td>72.149</td>
<td>0.00000</td>
</tr>
<tr>
<td>KMgCl13.6H2O</td>
<td>0.00000</td>
<td>2328.8</td>
<td>0.00000</td>
</tr>
<tr>
<td>CACL2.2MgCl2.12H2O</td>
<td>0.00000</td>
<td>0.44358E+20</td>
<td>0.00000</td>
</tr>
<tr>
<td>Na2SO4.10H2O</td>
<td>0.32821</td>
<td>0.26044E-03</td>
<td>0.32821</td>
</tr>
<tr>
<td>Na2SO4</td>
<td>0.00000</td>
<td>0.47236</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgSO4.6H2O</td>
<td>0.00000</td>
<td>0.17365E-01</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgSO4.7H2O</td>
<td>0.00000</td>
<td>0.30124E-02</td>
<td>0.00000</td>
</tr>
<tr>
<td>K2SO4</td>
<td>0.00000</td>
<td>0.25940E-02</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgSO4.K2SO4.6H2O</td>
<td>0.00000</td>
<td>0.14491E-05</td>
<td>0.00000</td>
</tr>
<tr>
<td>Na2SO4.MgSO4.4H2O</td>
<td>0.00000</td>
<td>0.43185E-08</td>
<td>0.00000</td>
</tr>
<tr>
<td>CACO3(CALCITE)</td>
<td>0.00000</td>
<td>0.14314E-04</td>
<td>0.00000</td>
</tr>
<tr>
<td>CASO4.2H2O</td>
<td>0.00000</td>
<td>0.94256E-04</td>
<td>0.00000</td>
</tr>
<tr>
<td>CASO4</td>
<td>0.00000</td>
<td>0.76631E-03</td>
<td>0.00000</td>
</tr>
<tr>
<td>MgSO4.12H2O</td>
<td>0.00000</td>
<td>0.67174E-10</td>
<td>0.00000</td>
</tr>
<tr>
<td>Na2CO3.10H2O</td>
<td>0.00000</td>
<td>0.31966E-02</td>
<td>0.00000</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>0.00000</td>
<td>0.31966E-02</td>
<td>0.00000</td>
</tr>
<tr>
<td>3MgCO3.Mg(OH)2.3H2O</td>
<td>0.00000</td>
<td>0.36356E-33</td>
<td>0.00000</td>
</tr>
<tr>
<td>CACO3</td>
<td>0.00000</td>
<td>0.14022E-15</td>
<td>0.00000</td>
</tr>
<tr>
<td>2H2O</td>
<td>0.00000</td>
<td>0.27789E-01</td>
<td>0.00000</td>
</tr>
<tr>
<td>K2CO3</td>
<td>0.00000</td>
<td>0.36768</td>
<td>0.00000</td>
</tr>
<tr>
<td>CaCO3(ARAGONITE)</td>
<td>0.00000</td>
<td>0.65647E-08</td>
<td>0.00000</td>
</tr>
<tr>
<td>CaCO3(VATERITE)</td>
<td>0.00000</td>
<td>0.21983E-07</td>
<td>0.00000</td>
</tr>
<tr>
<td>HNO3.3H2O</td>
<td>0.00000</td>
<td>1.71.86</td>
<td>0.00000</td>
</tr>
<tr>
<td>KNO3</td>
<td>0.00000</td>
<td>0.35949E+01</td>
<td>0.00000</td>
</tr>
<tr>
<td>NaN3</td>
<td>0.00000</td>
<td>2.9742</td>
<td>0.00000</td>
</tr>
<tr>
<td>HCL.3H2O</td>
<td>0.00000</td>
<td>10605.</td>
<td>0.00000</td>
</tr>
<tr>
<td>H2SO4.6.5H2O</td>
<td>0.00000</td>
<td>28.096</td>
<td>0.00000</td>
</tr>
<tr>
<td>H2SO4.4H2O</td>
<td>0.00000</td>
<td>10000.</td>
<td>0.00000</td>
</tr>
<tr>
<td>HCL.6H2O</td>
<td>0.00000</td>
<td>10000.</td>
<td>0.00000</td>
</tr>
<tr>
<td>NaN3.Na2SO4.2H2O</td>
<td>0.00000</td>
<td>0.84122E+01</td>
<td>0.00000</td>
</tr>
<tr>
<td>Na3H(SO4)2</td>
<td>0.00000</td>
<td>0.55897E+01</td>
<td>0.00000</td>
</tr>
<tr>
<td>NaNH2O4.H2O</td>
<td>0.00000</td>
<td>42.330</td>
<td>0.00000</td>
</tr>
<tr>
<td>K3(SO4)2</td>
<td>0.00000</td>
<td>0.50489E-04</td>
<td>0.00000</td>
</tr>
<tr>
<td>K5H3(SO4)4</td>
<td>0.00000</td>
<td>0.66187</td>
<td>0.00000</td>
</tr>
<tr>
<td>K2H6(SO4)7.H2O</td>
<td>0.00000</td>
<td>47.746</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
Iterations = 7