Connect With DRI

blogslogo
Follow DRI on FacebookFollow DRI on TwitterFollow DRI on InstagramWatch DRI videos on YouTubeView DRI photos on Flickr

Media Contact

Justin Broglio
Communications Officer - Northern Nevada

Office: 775.673.7610
Cell: 775.762.8320
Email: justin.broglio@dri.edu
2215 Raggio Parkway
Reno, NV 89512


Catherine Schell
Public Information Officer - Southern Nevada

Office: 702.862.5411
Cell: 702.608.3573
Email: catherine.schell@dri.edu
755 E. Flamingo Road
Las Vegas, NV 89119

Bacteria Get New Badge as Planet's Detoxifier

DRI scientists investigate the link between right-handed and left-handed amino acids

FOR IMMEDIATE RELEASE: March 19, 2014

Las Vegas - A study published this week in PLOS ONE authored by Dr. Henry Sun and his postdoctoral student Dr. Gaosen Zhang of Nevada based research institute DRI provides new evidence that Earth bacteria can do something that is quite unusual. Despite the fact that these bacteria are made of left-handed (L) amino acids, they are able to grow on right-handed (D) amino acids. This DRI study, funded by the NASA Astrobiology Institute and the NASA Exobiology Program, takes a closer look at what these implications mean for studying organisms on Earth and beyond.

"This finding is important because D-amino acids are slowly produced in soils through geochemical transformation of L amino acids. If they were allowed to accumulate, they would poison the environment for plants and animals. Our research shows that it is the bacteria that prevent D-amino acids from accumulating to toxic levels," explains Dr. Sun, who has studied microbial life in extreme environments in the Antarctic dry valleys, the Atacama Desert, and Death Valley.

Amino acids, the fundamental building blocks of life, come in two forms that, like our left and right hand, have identical parts. But the two forms are not the same from a three dimensional perspective. One is the mirror image of the other. Proteins and enzymes in Earth organisms, without exception, all use L-forms. As expected, soil bacteria are very efficient at consuming L-amino acids from the medium. The researchers then presented the same bacteria D-amino acids. To their surprise, these life-incompatible forms too were rapidly consumed.

“We are not saying that the D-amino acids are assimilated as is. If incorporated into proteins, this amount of D-amino acids would kill the organisms,” says Dr. Sun. “Rather, we think that a conversion occurred in the bacteria that turned the D-amino acids back into L-forms. All bacteria carry a specialized enzyme known as racemase which converts amino acids from one form to another,” adds Dr. Sun.

This then raises another question: If all organisms on Earth synthesize L-amino acids, where do D-amino acids come from? Amino acids have the property of being able to spontaneously flip from one form to another, a process called racemization. Racemization is very slow. Most organisms do not live long enough for this process to kill the proteins and, ultimately, the organisms themselves. In soils, however, amino acids can be sequestered for thousands or even millions of years, allowing racemization to accumulate. Eventually, the concentrated D-amino acids are released into the environments – to the waiting bacteria, rather than poisoning plant and animal life.

Bacteriologists have known that bacteria contain racemases, but they have always assumed that the enzymes were invented for making D-amino acids. Unlike plants and animals, bacteria need a small amount of D-amino acids, not to incorporate into proteins, but to incorporate into cell walls to increase resistance and stability.

“But this cannot be the reason that bacteria invented the racemase. If D-amino acids are toxic, you have to invent a detoxification mechanism first before you go around and make more of the stuff. We think it is much more likely that the racemase originated initially as a detoxification enzyme. Only later, do bacteria, now immune to D-amino acid toxicity, start to make D-amino acids for constructive purposes. The D-amino acid-making function, therefore, is a secondary biological invention," says Dr. Sun.

"The implications of our study go beyond Earth. The steps that led to the invention of racemases on Earth would also exist on other planets, even if life uses D- instead of L-amino acids. This means that D-bacteria would also have to invent racemases and, as a result, would consume L-amino acids for nutrients. This creates a scenario that scientists charged with the duty of protecting Earth from foreign organisms haven’t thought about," says Dr. Sun. "If D-bacteria ever visit us on Earth, they would compete with native bacteria for nutrients," he adds.


All DRI news releases are available at news.dri.edu

Note to Reporters and Editors: DRI, the nonprofit research campus of the Nevada System of Higher Education, strives to be the world leader in environmental sciences through the application of knowledge and technologies to improve people’s lives throughout Nevada and the world.

Air
Atmospheric Sciences (DAS)
air-feature
Air quality and atmospheric research including meteorology, visibility and pollutant transport.
NEWS • LABS & CAPABILITIES


Western Regional Climate Center
Climate Information and Data Services
WRCC-ff
Providing jointly developed products, services and capabilities that enhance the delivery of public climate info.
CURRENT OBSERVATIONS


Diversity at DRI
An Inclusive Mission of Research Excellence
Diversity at DRI
Offering a supportive and diverse environment for our students, faculty/staff and visitors.
 

Land and Life
Earth and Ecosystems Sciences (DEES)
land-life-feature
Research into changing landscapes including the soils, plants, animals and humans that affect them.
NEWS • LABS & CAPABILITIES


GreenPower
K-12 Outreach and Education
greenpower-feature
Supporting Nevada educators in science-based, environmental education with free tools, resources, and training.
NEWS • WHAT WE DO


Renewable Energy at DRI
Discovering New Energy Production Methods
dri-renewable-energyExpanding renewable energy research throughout Nevada and around the U.S.

Water
Hydrologic Sciences (DHS)
water-feature
Study of the natural and human factors that influence the availability and quality of water resources.
NEWS • LABS & CAPABILITIES


DRI Nevada Medal Event
2015 Medalist - Dr. Christopher McKay
nevada-medal
Proudly honoring outstanding achievement in science and engineering with gala events in Reno and Las Vegas.


Nevada Center of Excellence
Supporting Nevada's Economic Development
Center of ExcellenceCombining NSHE water expertise and IBM’s advanced technologies to grow tomorrow's workforce.