Connect With DRI

blogslogo
Follow DRI on FacebookFollow DRI on TwitterFollow DRI on InstagramWatch DRI videos on YouTubeView DRI photos on Flickr

Media Contact

Justin Broglio
Communications Officer - Northern Nevada

Office: 775.673.7610
Cell: 775.762.8320
Email: justin.broglio@dri.edu
2215 Raggio Parkway
Reno, NV 89512


Greg Bortolin
Director of Communications & Government Affairs

Las Vegas Office: 702.862.5409
Reno Office: 775.673.7465
Email: greg.bortolin@dri.edu
755 E. Flamingo Road
Las Vegas, NV 89119

Ancient Microbes Found Living Beneath the Icy Surface of Antarctic Lake

DRI scientists’ co-author study examining life in one of Earth’s coldest, ice-sealed ecosystems

FOR IMMEDIATE RELEASE: November 26, 2012

RENO – This week a pioneering study published in the Proceedings of the National Academy of Science (PNAS) and co-authored by Dr. Alison Murray and Dr. Christian Fritsen of Nevada’s Desert Research Institute (DRI) reveals, for the first time, a viable community of bacteria that survives and ekes out a living in a dark, salty and subfreezing environment beneath nearly 20 meters of ice in one of Antarctica’s most isolated lakes.

112612-CoringAtVida Kuhn-thbMembers of the Lake Vida expedition team.
Enlarge image for caption.
Lake Vida, the largest of several unique lakes found in the McMurdo Dry Valleys, contains no oxygen, is mostly frozen and possesses the highest nitrous oxide levels of any natural water body on Earth. A briny liquid that is approximately six times saltier than seawater percolates throughout the icy environment that has an average temperature of minus 13.5 degrees centigrade (or 8 degrees Fahrenheit).

“This study provides a window into one of the most unique ecosystems on Earth,” said Murray, the report’s lead author, and molecular microbial ecologist and polar researcher for the past 17 years, who has participated in 14 expeditions to the Southern Ocean and Antarctic continent. “Our knowledge of geochemical and microbial processes in lightless icy environments, especially at subzero temperatures, has been mostly unknown up until now. This work expands our understanding of the types of life that can survive in these isolated, cryoecosystems and how different strategies may be used to exist in such challenging environments.”

112612-22 LakeVidaCampsat-Murray-thbResearch field camp on Lake Vida, Victoria Valley.
Enlarge image for caption.
Despite the very cold, dark and isolated nature of the habitat, the report finds that the brine harbors a surprisingly diverse and abundant assemblage of bacteria that survive without a present-day source of energy from the sun. Previous studies of Lake Vida dating back to 1996 indicate that the brine and its’ inhabitants have been isolated from outside influences for more than 3,000 years.

Murray and her co-authors and collaborators, including the project’s principal investigator Dr. Peter Doran of the University of Illinois at Chicago, developed stringent protocols and specialized equipment for their 2005 and 2010 field campaigns to sample the lake brine while avoiding contaminating the pristine ecosystem.

To sample the unique environment researchers worked under secure, sterile tents on the lake’s surface to keep the site and equipment clean as they drilled ice cores, collected samples of the salty brine residing in the lake ice and then assessed the chemical qualities of the water and its potential for harboring and sustaining life, in addition to describing the diversity of the organisms detected.

112612-2-1-06a m08trim1micron-thbBacterial cells inhabiting icy brine channels, Lake Vida.
Enlarge photo for caption.
Geochemical analyses suggest that chemical reactions between the brine and the underlying iron-rich sediments generate nitrous oxide and molecular hydrogen. The latter, in part, may provide the energy needed to support the brine’s diverse microbial life.

“It’s plausible that a life-supporting energy source exists solely from the chemical reaction between anoxic salt water and the rock,” explained Fritsen, a systems microbial ecologist and Research Professor in DRI’s Division of Earth and Ecosystem Sciences.

“If that’s the case,” echoed Murray. “This gives us an entirely new framework for thinking of how life can be supported in cryoecosystems on earth and in other icy worlds of the universe."

Murray added further research is currently under way to analyze the abiotic, chemical interactions between the Lake Vida brine and the sediment, in addition to investigating the microbial community by using different genome sequencing approaches. The results could help explain the potential for life in other salty, cryogenic environments beyond Earth.

The Lake Vida brine also represents a cryoecosystem that is a suitable and accessible analog for the soils, sediments, wetlands, and lakes underlying the Antarctic ice sheet that other polar researchers are just now beginning to explore.

The funding for this research was supported jointly by NSF and NASA.

About the Desert Research Institute:

DRI, the nonprofit research campus of the Nevada System of Higher Education, strives to be the world leader in environmental sciences through the application of knowledge and technologies to improve people’s lives throughout Nevada and the world.

All DRI news releases available at: http://news.dri.edu/

Additional Details:

Proceedings of the National Academy of Science (PNAS)

Article #12-08607 - “Microbial Life at -13 ºC in the Brine of an Ice-Sealed Antarctic Lake,” by Alison E. Murray et al.

More information on the Lake Vida project can be found online at: http://www.dri.edu/lake-vida

Photographs and Video available:

Field Work – including the ice core drilling process, Antarctic expedition, ice cores, and Lake Vida research team members.


All DRI news releases are available at news.dri.edu

Note to Reporters and Editors: DRI, the nonprofit research campus of the Nevada System of Higher Education, strives to be the world leader in environmental sciences through the application of knowledge and technologies to improve people’s lives throughout Nevada and the world.

Air
Atmospheric Sciences (DAS)
air-feature
Air quality and atmospheric research including meteorology, visibility and pollutant transport.
NEWS • LABS & CAPABILITIES


Western Regional Climate Center
Climate Information and Data Services
WRCC-ff
Providing jointly developed products, services and capabilities that enhance the delivery of public climate info.
CURRENT OBSERVATIONS


Diversity at DRI
An Inclusive Mission of Research Excellence
Diversity at DRI
Offering a supportive and diverse environment for our students, faculty/staff and visitors.
 

Land and Life
Earth and Ecosystems Sciences (DEES)
land-life-feature
Research into changing landscapes including the soils, plants, animals and humans that affect them.
NEWS • LABS & CAPABILITIES


GreenPower
K-12 Outreach and Education
greenpower-feature
Supporting Nevada educators in science-based, environmental education with free tools, resources, and training.
NEWS • WHAT WE DO


Renewable Energy at DRI
Discovering New Energy Production Methods
dri-renewable-energyExpanding renewable energy research throughout Nevada and around the U.S.

Water
Hydrologic Sciences (DHS)
water-feature
Study of the natural and human factors that influence the availability and quality of water resources.
NEWS • LABS & CAPABILITIES


DRI Nevada Medal Event
2015 Medalist - Dr. Christopher McKay
nevada-medal
Proudly honoring outstanding achievement in science and engineering with gala events in Reno and Las Vegas.


Nevada Center of Excellence
Supporting Nevada's Economic Development
Center of ExcellenceCombining NSHE water expertise and IBM’s advanced technologies to grow tomorrow's workforce.