Removal of Elemental Mercury from Flue Gas by V$_2$O$_5$/TiO$_2$ Catalysts Dispersed on Mesoporous Silica

Ying Li1, Hailong Li2,3, Qianyi Zhang1, Chang-Yu Wu2

1Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
2Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
3State Key Lab of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China

AWMA International Specialty Conference, Xi’an, China
May 12nd, 2010
Anthropogenic Mercury Emissions

Global Mercury Emissions: 2,382 metric tons

- Coal/Fuel combustion: 1470 (62%)
- Non-ferrous metal production: 170 (7%)
- Pig iron and steel production: 30 (1%)
- Cement production: 130 (5%)
- Waste disposal: 110 (5%)
- Artisanal gold mining: 300 (13%)
- Chlor-alkali: 172 (7%)

Mercury Emissions in China by Sectors, 2003

- Coal combustion: 39%
- Petroleum combustion: 1%
- Zinc smelting: 31%
- Lead smelting: 11%
- Copper smelting: 3%
- Gold smelting: 7%
- Steel smelting: 1%
- Cement industry: 5%
- Household Garbage Incineration: 2%
- Other sources: 39%

Mercury Emissions in the U.S. – 33% from coal-fired power plants

Coal combustion is the major source of mercury emissions!

Source: UNEP Global Mercury Assessment, UNEP, Geneva, December 2002
Elemental mercury (Hg0): volatile, not soluble in water
Oxidized mercury (Hg$^{2+}$): water soluble \rightarrow Wet Scrubber
Particulate mercury (Hg$_p$): bound on fly ash \rightarrow ESP

Solutions
- Adsorption of Hg0 and Hg$^{2+}$ on sorbents
- Oxidation of Hg0 to Hg$^{2+}$
Mercury Control Technologies: Sorbent Injection

- Injection of activated carbon upstream of an ESP or FF showed effectiveness in mercury capture, but the resultant carbon content in the fly ash makes the combustion by-products unsellable → cost increase!

Source of Figure: http://www.dnr.state.wi.us/air/toxics/mercury/rule.htm
Elemental mercury is oxidized by injected bromine or bromide species, and the oxidized mercury is removed by wet scrubber.

Balance-of-plant impacts of bromine/bromide injection
Elemental mercury is oxidized by SCR or metal oxides catalysts, and the oxidized mercury is removed by wet scrubber – V_2O_5 is the active site for Hg oxidation.

- Suitable for multipollutant control option if installed with SCR and/or Wet FGD.
- Efficiency of Hg oxidation by SCR catalyst varies.
- Mechanism of Hg–SCR catalyst interaction is not clear.

Source of Figure: http://www.dnr.state.wi.us/air/toxics/mercury/rule.htm
Previously we have developed novel SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts and tested them in simulated flue gas downstream of an ESP (T = 135 °C) – The results showed high efficiencies of Hg oxidation (90%) and Hg capture (40%) due to high surface area support and optimized V$_2$O$_5$ content (Li, Wu, et al. *Environ. Sci. Tech.* 2008, 42, 5304-5309)

- The SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts have not been tested at SCR temperatures (300 ~ 400 °C).
- It is hypothesized that temperature will affect the catalytic performance.

Source of Figure: http://www.dnr.state.wi.us/air/toxics/mercury/rule.htm
Research Objectives

• To investigate the temperature effect on Hg0 oxidation and capture using SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts

• To study the mechanism of Hg0 catalytic oxidation over SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts and the effects of flue gas components

• To recommend the best strategy to apply the SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts as an alternative technology for Hg removal in coal-fired power plants
Catalyst Synthesis and Characterization

Synthesis of SiO$_2$/TiO$_2$/V$_2$O$_5$: Sol-Gel method

Chemicals: D/I water, ethanol, TEOS (SiO$_2$ precursor), TiO$_2$ nanoparticles (Degussa, P25), VTPO (V_2O$_5$ precursor), 1M HNO$_3$, 3% HF

Procedures: Mix chemicals → stir for 2 h → pipette the solution to assay plate → gelation → age at room temperature for 2 days → heat in oven at 65 °C for 2 days → rinse with D/I water → dry at 103 °C for 18 h → dry at 180 °C for 6 h

Cylindrical Pellets: 3 mm × 5 mm
BET Surface Area: 260–320 m2/g
Pore Size: ~14 nm

(a) SEM image, (b) Si mapping, (c) Ti mapping
Catalyst Characterization

BET Surface Area

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET specific surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>341.8</td>
</tr>
<tr>
<td>SV2</td>
<td>263.4</td>
</tr>
<tr>
<td>SV5</td>
<td>283.2</td>
</tr>
<tr>
<td>SV8</td>
<td>273.8</td>
</tr>
<tr>
<td>SV10</td>
<td>262.9</td>
</tr>
<tr>
<td>ST12</td>
<td>319.4</td>
</tr>
<tr>
<td>ST12V2</td>
<td>258.0</td>
</tr>
<tr>
<td>ST12V5</td>
<td>262.5</td>
</tr>
</tbody>
</table>

X-Ray Diffraction (XRD) Analysis

- **SiO₂**: amorphous
- **TiO₂**: mixture of anatase and rutile
- **V₂O₅**: amorphous vanadate species; crystalline phase appears when **V₂O₅** > 8 wt%
Experimental Setup – Packed-Bed Reactor
Experimental Plan

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Carrier gas</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td>ST18V5</td>
<td>N₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂ + 4% O₂</td>
</tr>
<tr>
<td>Set 2</td>
<td>SV5</td>
<td>Simulated flue gas(SFG)</td>
</tr>
<tr>
<td></td>
<td>ST6V5</td>
<td>4%O₂, 8%H₂O, 12%CO₂,</td>
</tr>
<tr>
<td></td>
<td>ST12V5</td>
<td>10ppm HCl, 300ppmNO,</td>
</tr>
<tr>
<td></td>
<td>ST18V5</td>
<td>400ppm SO₂, balanced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with N₂</td>
</tr>
<tr>
<td>Set 3</td>
<td>ST18V5</td>
<td>N₂ + 4% O₂ + individual flue gas components</td>
</tr>
</tbody>
</table>

- The feeding Hg⁰ concentration was 65 ~ 75 µg m⁻³
- In each test 200 mg catalyst was used
O₂ enhanced the Hg⁰ oxidation ability of ST18V5 catalyst at both 135 °C and 350 °C

\[
\begin{align*}
V_2O_5 + Hg & \rightarrow V_2O_4 + HgO \\
V_2O_4 + \frac{1}{2} O_2 & \rightarrow V_2O_5
\end{align*}
\]

Overall Reaction \[Hg + \frac{1}{2} O_2 \rightarrow HgO\]
• STV catalysts have better Hg oxidation ability than SV catalyst in the range of 135 to 400 °C.
• Catalytic activity increases as TiO₂ content of the STV catalysts increases from 0 ~ 18%.
• Hg⁰ oxidation by STV catalysts decreases as temperature increases from 135 to 350 °C and levels off from 350 to 400 °C.
Set 3: Effect of Individual Flue Gas Components for ST18V5 in the range of 135 ~ 350 °C

- 400 ppm SO₂ has insignificant effect
- 300 ppm NO increases Hg⁰ oxidation to some extent
- 5 ppm HCl increases Hg⁰ oxidation dramatically
Set 3: Effect of Moisture at Different Temperatures

Moisture significantly inhibits mercury oxidation, particularly at higher temperatures

- Eley-Rideal reaction mechanism, where adsorbed Cl reacts with gas-phase (or weakly adsorbed) Hg\(^0\).

- Competitive adsorption on the active sites by water vapor lowers Hg\(^0\) oxidation rate
Conclusions

- SiO$_2$/TiO$_2$/V$_2$O$_5$ (STV) catalysts have been synthesized and tested for Hg0 removal from simulated coal-combustion flue gas in the temperature range of 135 to 400 °C.
- STV catalysts with higher TiO$_2$ content show higher Hg0 oxidation ability.
- Hg0 oxidation efficiency decreases as temperature increases from 135 to 400 °C.
- O$_2$, NO, and HCl are the flue gas components that promote Hg0 oxidation, with HCl having the most important effect.
- Water vapor significantly inhibits Hg0 oxidation, probably due to its competitive adsorption on the active sites.

It is recommended that the SiO$_2$/TiO$_2$/V$_2$O$_5$ (STV) catalysts be applied in the lower temperature region (i.e. in between ESP and FGD) for best performance on Hg removal from flue gas.
Future Studies

• More systematic experimental studies to investigate the effects of flue gas components at different concentrations corresponding to burning different types of coals
• Further understanding of the mechanism of Hg0 oxidation and adsorption on SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts
• Optimize the composition and nanostructures of SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts
• Compare the Hg removal efficiency of SiO$_2$/TiO$_2$/V$_2$O$_5$ catalysts with commercial SCR catalysts under flue gas conditions
THANK YOU!

Questions?
Effect of individual flue gas component at 350 °C

Hg Oxidation Efficiency:

\[
E_{\text{oxi}}(\%) = \frac{\Delta H_g^0}{H_g^0_{\text{in}}} = \frac{H_g^0_{\text{in}} - H_g^0_{\text{out}}}{H_g^0_{\text{in}}} \times 100\%
\]

Hg Capture Efficiency:

\[
E_{\text{cap}}(\%) = \frac{\Delta H_g^T}{H_g^T_{\text{in}}} = \frac{H_g^T_{\text{in}} - H_g^T_{\text{out}}}{H_g^T_{\text{in}}} \times 100\%
\]